
Exercises in Markov processes and martingales∗

2022/23 spring semester

Conditional expectation

1. We roll two dices. X is the result of one of them and Z the sum of the results. Find
E [Z|X ] and E [X|Z].

2. Homework 1.A. (13th Mar) Let (Ω,F ,P) be the probability space where Ω = [0, 1], F
is the Borel σ-algebra and P is the Lebesgue measure on it. Define the random variables
X(ω) = 3ω2 and Y (ω) = 1(ω ∈ [1/2, 1]) − 1(ω ∈ [0, 1/2)) for any ω ∈ Ω. What is
E(X|Y )?

3. Let Ω = {−1, 0,+1}, F = 2Ω and µ({−1}) = µ({0}) = µ({+1}) = 1/3. Consider also
the sub-σ-algebras

G = {∅, {−1}, {0,+1},Ω}, H = {∅, {−1, 0}, {+1},Ω}.

Let X : Ω → R be the random variable X(ω) = ω. Compute E(E(X|G)|H) and
E(E(X|H)|G).

4. Let Xj , j = 1, 2, . . . be iid. random variables with common distribution P(Xj = −1) =
P(Xj = +1) = 1/2 and let Sn = X1 + · · ·+Xn. Compute the conditional expectations
E(X1|Sn), E(Sn|X1) and E(S2

n+m|Sn).

5. Homework 1.B. (13th Mar) Suppose that the random variables X, Y, Z are jointly
defined on a probability space. Prove that

(a) E(X) = E(E(X|Y )),

(b) E(Y |Z) = E(E(Y |X,Z)|Z).

6. Prove the following general version of Bayes’s formula. Given the probability space
(Ω,F ,P) and let G be a sub-σ-algebra of F . Let G ∈ G and A ∈ F with P(A) > 0. Show
that

P (G|A) =

∫

G

P (A|G) dP
∫

Ω

P (A|G) dP .

7. Prove the conditional variance formula

Var(X) = E [Var(X|Y )] + Var (E [X|Y])

where Var(X|Y ) = E [X2|Y ]− (E [X|Y ])2.

∗Most of the exercises by courtesy of Károly Simon, some of them by courtesy of Bálint Tóth.
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8. Let X1, X2, . . . be iid. random variables and N be a non-negative integer valued random
variable which is independent of Xi, i ≥ 1. Prove that

Var

(

N
∑

i=1

Xi

)

= E [N ] Var(X) + (E [X ])2Var(N).

9. Let X be a random variable. Assume that Y is another random variable for which
P (Y = 0 or Y = 1) = 1. Prove that Y ∈ σ(X) iff there exists a ϕ : R → R Borel
measurable function such that Y = ϕ(X).

10. Assume that X, Y are jointly continuous random variables with joint density f(x, y).
Prove that

E [Y |X ] =

∫

R

yf(X, y) dy

∫

R

f(X, y) dy
.

11. Homework 1.C. (13th Mar) Let Y ∈ σ(G). Prove that

E [X|G] ≥ Y ⇐⇒ ∀A ∈ G E [X · 1A] ≥ E [Y · 1A] .

12. Let X and Y be random variables on the same probability space. Prove that X and Y
are independent iff for every ϕ : R → R bounded measurable functions we have

E [ϕ(Y )|X ] = E [ϕ(Y )] .

13. Let X, Y ∈ L1(Ω,F ,P) satisfying

E [X|Y ] = Y and E [Y |X ] = X.

Show that P(X = Y ) = 1.

Hint: If X 6= Y , then there is a c ∈ Q such that either X ≤ c and Y > c or X > c and
Y ≤ c.

Martingales

14. Homework 2.A. (20th Mar) Let Nt be the counting process of a Poisson point process
with rate λ = 1. (See section 2.2 in the book R. Durrett: Essentials of Stochastic Processes
for the definition.) Find E [N1|N2] and E [N2|N1].

15. Homework 2.B. (20th Mar) Let Sn := X1 + · · ·+Xn where X1, X2, . . . are iid. with
X1 ∼ Exp(1). Verify that

Mn :=
n!

(1 + Sn)n+1
· eSn

is a martingale with respect to the natural filtration Fn.

16. Homework 2.C. (20th Mar) For every i = 1, . . . , m let
{

M
(i)
n

}∞

n=1
be a martingale

with respect to {Fn}∞n=1. Show that Mn := max
1≤i≤m

M
(i)
n is a submartingale with respect to

{Fn}.
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17. Homework 3.A. (27th Mar) Let X, Y be two independent Exp(λ) random variables
and Z := X + Y . Show that for any non-negative measurable h we have E [h(X)|Z] =
1
Z

Z
∫

0

h(t) dt.

18. Homework 3.B. (27th Mar) Let ξ1, ξ2, . . . be a sequence of iid. random variables
with P(ξ1 = 1) = P(ξ1 = −1) = 1/2 and define the simple symmetric random walk
Sn = ξ1 + · · · + ξn. For the integers k and l, define the hitting times T−k = min{n :
Sn = −k} and Tl = min{n : Sn = l} and the stopping time given by their minimum
T = min(T−k, Tl).

(a) Find E(ST ) by using the optional stopping theorem for the stopped martingale Sn∧T .

(b) What is P(T−k < Tl)? Hint: Note that the random variable ST can only take two
values.

(c) We have shown previously that Mn = S2
n − n is a martingale. Apply the optional

stopping theorem for Mn and T and compute E(T ).

19. Homework 3.C. (27th Mar) In the casino, a player’s winnings per unit stake on game
n are ξn where {ξ}∞n=1 are iid. random variables with P(ξn = +1) = p and P(ξn = −1) = q
with p+ q = 1 and p > 1/2. In other words with probability q < 1/2 the player loses the
stake and with probability p she gets back twice of the stake. Let Cn be the player’s stake
on game n. We assume that Cn is previsible, that is Cn+1 ∈ Fn := σ (ξ1, . . . , ξn) for all n.
Let Yn denote the wealth of the player after the nth round. We assume that there is an
ε > 0 such that 0 ≤ Cn ≤ (1− ε)Yn−1. We call α = p log p+ q log q + log 2 the entropy.

(a) Define the function
f(x) = p ln(1 + x) + q ln(1− x)

for x ∈ [0, 1]. Show that f is strictly concave. Find maxx∈[0,1] f(x).

(b) Prove that for any previsible betting strategy Cn, the process Zn = log Yn − nα is a
supermartingale. Show that this implies E(log Yn − log Y0) ≤ nα. Hint: Introduce
xn = Cn/Yn−1 so that Yn+1 = Yn · (1 + xn+1ξn+1). The function f (defined above)
appears when calculating E(log(Yn+1) | Fn).

(c) Show that there is a betting strategy for which Zn is a martingale and that E(log Yn−
log Y0) = nα is achieved. (This is sometimes called the log-optimal portfolio in
economics.)

Normal distribution

20. Let Y ∼ N (µµµ,Σ) in R2, Y = (Y1, Y2) and let a1, a2 ∈ R. Find the distribution of
a1Y1 + a2Y2.

21. Homework 4.A. (3rd Apr) Let Y ∼ N (µµµ,Σ) and let B be a non-singular matrix.
Find the distribution of X = B ·Y.

22. Homework 4.B. (3rd Apr) Let X ∼ N (µµµ,Σ) in Rn. Let X1 := (X1, . . . , Xp) and
X2 := (Xp+1, . . . , Xn). Let Σ, Σ1 and Σ2 the covariance matrices of X , X1 and X2

respectively. Prove that X1 and X2 are independent if and only if

Σ =

(

Σ1 0
0 Σ2

)

.
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23. Construct a random vector (X, Y ) such that both X and Y have one-dimensional normal
distribution but (X, Y ) does not have a bivariate normal distribution in the general sense
that it is not an affine transform of a standard bivariate normal vector.

24. Let X = (X1, . . . , Xd) be standard multivariate normal distribution. Let Σ be an n × n
positive semi-definite, symmetric matrix and let µµµ ∈ Rd. Prove that there exists an affine
transformation T : Rd → Rd, such that T (X) ∼ N (µµµ,Σ).

25. Homework 4.C. (3rd Apr) Let X be the height of the father and let Y be the height of
the son in a sample of father-son pairs. Assume that (X, Y ) is bivariate normal. Assume
that in inches

E [X ] = 68, E [Y ] = 69, σX = σY = 2, ρ = 0.5

where ρ is the correlation of (X, Y ). Find the conditional distribution of Y given X = 80
(6 feet 8 inches).

Martingales

26. Homework 5.A. (17th Apr) There are n white and n black balls in an urn. We pull
out all of them one-by-one without replacement. Whenever we pull

• a black ball we have to pay 1$,

• a white ball we receive 1$.

Let X0 := 0 and Xi be the amount we gained or lost after the ith ball was pulled. We
define

Yi :=
Xi

2n− i
for 1 ≤ i ≤ 2n− 1, and Zi :=

X2
i − (2n− i)

(2n− i)(2n− i− 1)
for 1 ≤ i ≤ 2n− 2.

(a) Prove that Y = (Yi) and Z = (Zi) are martingales.

(b) Find Var(Xi).

27. Homework 5.B. (17th Apr) Let ξ1, ξ2, . . . be independent standard normal variables.
Recall that their moment generating function is M(θ) = E

[

eθξi
]

= eθ
2/2. Let a, b ∈ R

and define Sn =
n
∑

k=1

ξk and Xn = eaSn−bn. Prove that

(a) Xn → 0 a.s. iff b > 0.

(b) Xn → 0 in Lr iff r < 2b
a2
.

28. Extension of part (iii) of Doob’s optional stopping theorem. Let X be a supermartingale.
Let T be a stopping time with E [T ] < ∞ as in part (iii) of Doob’s optional stopping
theorem. Assume that there is a C such that

E [|Xk −Xk−1||Fk−1] ≤ C

holds almost surely for all k > 0. Prove that E [XT ] ≤ E [X0].

29. Let X,Z be Rd-valued random variables defined on the (Ω,F ,P). Assume that

E
[

eit·X+is·Z
]

= E
[

eitX
]

· E
[

eisZ
]

for all s, t ∈ Rn. Prove that X,Z are independent.
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30. Homework 5.C. (17th Apr) Construct a martingale which is not a Markov chain.

31. Homework 6.A. (24th Apr) Let Xn be a discrete time birth–death process (that is a
Markov chain on the non-negative integers) with transition probabilities

p(i, i+ 1) = pi, p(i, i− 1) = 1− pi = qi

for i ≥ 1 which are all assumed to be strictly positive. We define the function

g : N → R+, g(0) = 0, g(k) = 1 +
k−1
∑

j=1

j
∏

i=1

qi
pi
.

(a) Prove that Zn := g(Xn) is a martingale for the natural filtration.

(b) Let 0 < i < n be fixed. Find the probability that a process started from i gets to n
earlier than to 0.

32. Homework 6.B. (24th Apr) Let an be a deterministic sequence of real numbers and
let {εn} be an iid. sequence of random variables satisfying P (εn = ±1) = 1

2
. Show that

∞
∑

n=1

εnan converges almost surely if and only if
∞
∑

n=1

a2n < ∞.

33. Homework 6.C. (24th Apr) Let X1, X2, . . . be an independent sequence of random

variables with X1 = 0 and for n ≥ 2 with P (Xn = −n2) = 1
n2 and P

(

Xn = n2

n2−1

)

=

1− 1
n2 . Let Sn := X1 + · · ·+Xn. Show that

(a) {Sn} is a martingale with zero expectation which converges to ∞ a.s.

(b) lim
n→∞

Sn/n = 1.

Hint: The Borel–Cantelli lemma can be useful which says that if the events A1, A2, . . .
satisfy

∑

k P(Ak) < ∞, then with probability one, only finitely many of them happen.

34. Homework 7.A. (3rd May)

(a) Let X = (Xn) be an L2 random walk that is a martingale, i.e. let Zk be iid. random
variables with 0 mean and finite variance σ2 and let Xn = Z1+ · · ·+Zn. Prove that
the angle bracket process of X is An = nσ2.

(b) Let Xn be an L2 martingale with angle bracket process An. Let Cn be previsible and
also L2. Prove that the angle bracket process of the martingale transform Y = C •X
is given by C2 • A.

35. Homework 7.B. (3rd May) Let M = (Mn) be a martingale with M0 = 0 and |Mk −
Mk−1| < C for a C ∈ R. Let T be a stopping time which is finite a.s. and define

Un =

n
∑

k=1

(Mk −Mk−1)
2
1T≥k, Vn = 2

∑

1≤i<j≤n

(Mi −Mi−1)(Mj −Mj−1)1T≥j ,

U∞ =

∞
∑

k=1

(Mk −Mk−1)
2
1T≥k, V∞ = 2

∑

1≤i<j

(Mi −Mi−1)(Mj −Mj−1)1T≥j .

(a) Prove that M2
T∧n = Un + Vn and M2

T = U∞ + V∞.

(b) Assume further that E [T 2] < ∞. Show that lim
n→∞

Un = U∞ a.s. and E [U∞] < ∞
and E [Vn] = E [V∞] = 0.
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(c) Conclude that if E [T 2] < ∞, then lim
n→∞

E [M2
T∧n] = E [M2

T ].

36. Homework 7.C. (3rd May)Wald equalities. Let Y1, Y2, . . . be iid. L
1 random variables.

Let Sn := Y1 + · · · + Yn and we write µ = E [Yi]. Let T be a stopping time satisfying
E [T ] < ∞.

(a) Prove that
E [ST ] = µ · E [T ] .

(b) Assume further that Yi are uniformly bounded (∃C ∈ R with |Yi| < C) and E [T 2] <
∞. We write σ2 = Var(Yi). Then

E
[

(ST − µT )2
]

= σ2 ·E [T ] .

Hint: Introduce an appropriate martingale and apply the result of the previous
exercise.

37. Homework 8.A. (10th May) A branching process Z = (Zn)
∞
n=0 is defined recursively

by a given family of non-negative integer valued iid. random variables
{

X
(n)
k

}∞

k,n=1
as

follows:
Z0 := 1, Zn+1 := X

(n+1)
1 + · · ·+X

(n+1)
Zn

, n ≥ 0.

Let µ = E
[

X
(n)
k

]

and Fn = σ(Z0, Z1, . . . Zn). We write f(s) for the generating function

of the offspring distribution, that is

f(s) = E
(

sX
(n)
k

)

=

∞
∑

m=0

P
(

X
(n)
k = m

)

sm

for any k and n. Further, let

{extinction} = {Zn → 0} = {∃n, Zn = 0} , {explosion} = {Zn → ∞}

and denote q = P (extinction). Recall that q is the smaller (if there are two) fixed point
of f(s), that is q is the smallest solution of f(q) = q.

(a) Prove by induction that E [Zn] = µn.

(b) Show that E
[

sZn+1 |Fn

]

= f(s)Zn for every s ≥ 0. Explain that qZn is a martingale
and lim

n→∞
Zn = Z∞ exists a.s.

(c) Let T = min {n : Zn = 0} be the extinction time with T = ∞ if Zn > 0 always. Prove
by dominated convergence that q = E

[

qZT

]

= E
[

qZ∞ · 1T=∞

]

+ E
[

qZT · 1T<∞

]

.

(d) Prove that E
[

qZ∞ · 1T=∞

]

= 0.

(e) Conclude that if T (ω) = ∞ then Z∞ = ∞, hence

P (extinction) +P (explosion) = 1.

38. Homework 8.B. (10th May) Assume that for the offspring distribution of the branch-
ing process Zn, we have

µ = E
[

X
(n)
k

]

< ∞ and 0 < σ2 = Var(X
(n)
k ) < ∞.

Prove that
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(a) Mn = Zn/µ
n is a martingale for the natural filtration Fn.

(b) Show that E
[

Z2
n+1|Fn

]

= µ2Z2
n + σ2Zn and conclude that the martingale Mn is

bounded in L2 if and only if µ > 1.

(c) Assume that µ > 1 which implies that M∞ = lim
n→∞

Mn exists in L2 and a.s. Prove

that

Var(M∞) =
σ2

µ(µ− 1)
.

39. Homework 8.C. (10th May) LetX1, X2, . . . be iid. random variables with a continuous
distribution function. Let Ei be the event that a record occurs at time n. That is E1 = Ω
and En = {Xn > Xm, ∀m < n}. Prove that {Ei}∞i=1 are independent and P (Ei) = 1/i.
Hint: For the independence show that for any i1 < · · · < in one has P(Ei1|Ei2 . . . Ein) =
1/i1 and write P(Ei1 . . . Ein) =

∏n
j=1P(Eij |Eij+1

. . . Ein).

40. Let E1, E2, . . . be independent with P (Ei) = 1/i. Let Yi := 1Ei
and Nn := Y1 + · · ·+ Yn.

In the special case of the previous homework, Nn is the number of records until time n.

(a) Prove that
∞
∑

k=2

Yk−1/k
log k

converges almost surely.

(b) Using Kronecker’s lemma conclude that lim
n→∞

Nn

logn
= 1 a.s.

41. Assume that in the branching process Zn, q = 1 where q is the probability of extinction.
Prove that Mn = Zn/µ

n is not a uniformly integrable martingale.

42. Homework 9.A (17th May) Let C be a class of random variables of (Ω,F ,P). Assume
that C is Lp bounded for some p > 1, that is, ∃p > 1 and A ∈ R such that E [|X|p] < A
for all X ∈ C. Show that then C is UI.

43. Let C be a class of random variables of (Ω,F ,P). Assume that C is dominated by an
integrable random variable, that is ∃Y ∈ L1(Ω,F ,P) such that |X| ≤ Y a.s. ∀X ∈ C.
Show that then C is UI.

44. Homework 9.B (17th May) Let C be a class of random variables on (Ω,F ,P). Prove
that C is UI if and only if the following two conditions hold

(a) C is L1-bounded, that is sup {E [|X|] : X ∈ C} < ∞ and

(b) ∀ε > 0, ∃δ > 0 s.t.

F ∈ F and P (F ) < δ =⇒ E [|X|1F ] < ε for all X ∈ C.

45. Let C and D be UI classes of random variables. Prove that

C +D = {X + Y : X ∈ C and Y ∈ D}

is also UI. Hint: Use the previous exercise.

46. Let C be a UI family of random variables. Let us define

D := {Y : ∃X ∈ C, ∃G sub-σ-algebra of F s.t. Y = E [X|G]} .

Prove that D is also UI.
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47. Homework 9.C (17th May) Let X1, X2, . . . be iid. random variables with E [X+] = ∞
and E [X−] < ∞. (Recall X = X+ −X− and X+, X− ≥ 0.) Use the SLLN to prove that
Sn/n → ∞ a.s. where Sn := X1 + · · · + Xn. Hint: For M > 0 let XM

i = Xi ∧ M and
SM
n = XM

n +· · ·+XM
n . Explain why lim

n→∞
SM
n /n = E

[

XM
i

]

and lim inf
n→∞

Sn/n ≥ lim
n→∞

SM
n /n.

48. Homework 10.A (24th May) (infinite monkey theorem) Prove that a monkey typing
at random on a typewriter for infine time will type the complete works of Shakespeare
eventually.

49. Homework 10.B (24th May) (Azuma–Hoeffding inequality)

(a) Assume that Y is a random variable which takes values from [−c, c] and E [Y ] = 0
holds. Prove that for all θ ∈ R we have

E
[

eθY
]

≤ cosh(θc) ≤ exp

(

1

2
θ2c2

)

.

Hint: Let f(z) := exp(θz), z ∈ [−c, c]. Then by the convexity of f we have

f(y) ≤ c− y

2c
f(−c) +

c+ y

2c
f(c).

Use Taylor expansion for the second inequality.

(b) Let M be a martingale with M0 = 0 such that for a sequence of positive numbers
{cn}∞n=1 we have |Mn−Mn−1| ≤ cn for all n. Then the following inequality holds for
all x > 0:

P

(

sup
k≤n

Mk ≥ x

)

≤ exp

(

−1

2
x2/

n
∑

k=1

c2k

)

.

Hint: Use submartingale inequlaity as in the proof of LIL. Then present Mn (in
the exponent) like a telescopic sum of its increments. Write the expectation of the
product as the expectation of a conditional expectation with respect to the σ-algebra
generated by the first n − 1 increments. Use the first part of this exercise for the
conditional expectation, iterate and optimize in θ.

50. Homework 10.C (24th May) m balls are placed one by one into n urns independently
at random with uniform distribution among the urns. Let Fk be the σ-algebra generated
by the place of the first k balls and define the martingale Mk = E(N |Fk) where N is the
number of empty urns after placing the last ball. Let Yk be the number of empty urns
after placing the kth ball. Show that

(a) Mk = Yk

(

n−1
n

)m−k
;

(b) |Mk −Mk−1| ≤
(

n−1
n

)m−k
;

(c)

P(|N − µ| ≥ ε) ≤ 2 exp

(

−ε2(n− 1/2)

n2 − µ2

)

where µ = EN = n
(

n−1
n

)m
.

Hint: For part (b) note that the possible values of Yk are Yk−1 or Yk−1 − 1. For part (c)
use the Azuma–Hoeffding inequality for the martingales Mk − µ and −Mk + µ.
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51. (Exercise for Markov chain CLT) Consider the following Markov chain {Xn}∞n=0. The
state space is Z. The transition probabilities are p(0, 1) = p(0,−1) = 1

2
and for an

arbitrary x ∈ N+ we have

p(x, x+ 1) = p(x, 0) =
1

2
, p(−x,−x − 1) = p(−x, 0) =

1

2
.

(a) Find the stationary measure π for Xn.

(b) Define the operator P : L1(Z, π) → L1(Z, π) by (Pg)(i) :=
∑

j∈Z

p(i, j)g(j) and let I

be the identity on L1(Z, π), i.e. P acts on g as a multiplication of an infinite matrix
and an infinite vector. Further, let f : Z → R be an arbitrary function satisfying
the following conditions:

∀x ∈ Z, f(x) = −f(−x), and ∃a <
√
2 s.t. f(x) < a|x| for all x large enough.

For example polynomials of the form f(x) =
n
∑

i=1

b2i−1x
2i−1.

(c) Construct a function g ∈ L2(π) such that ((I − P ) · g)(i) = f(i).

(d) From now on we always assume that f(x) = x−3. Determine

σ2 := Eπ

[

(g(X1)− E(g(X1)|F0))
2] .

(e) Prove that P (−3σ
√
n ≤ f(X1) + · · ·+ f(Xn) ≤ 3σ

√
n) ≥ 0.99 for sufficiently large

n.

9


