Exercises in Markov processes and martingales®

2022/23 spring semester

Conditional expectation

1.

We roll two dices. X is the result of one of them and Z the sum of the results. Find
E[Z|X] and E [X]|Z].

. Homework 1.A. (13th Mar) Let (2, 7, P) be the probability space where © = [0, 1], F

is the Borel o-algebra and P is the Lebesgue measure on it. Define the random variables
X(w) = 3w? and Y(w) = 1(w € [1/2,1]) — I(w € [0,1/2)) for any w € Q. What is
E(X|Y)?

CLet Q@ = {-1,0,+1}, F = 2% and u({-1}) = p({0}) = u({+1}) = 1/3. Consider also

the sub-o-algebras
g= {@7{_1}7{07+1}>Q}7 H= {@,{—1,0},{+1},Q}.

Let X : Q@ — R be the random variable X(w) = w. Compute E(E(X|G)|H) and
E(E(X[H)|G).

. Let Xj, j =1,2,... beiid. random variables with common distribution P(X; = —1) =

P(X; =+1)=1/2 and let S,, = X; +---+ X,,. Compute the conditional expectations
E(X1]S,), E(S,|X1) and E(S2_,,|S,).

n+m

. Homework 1.B. (13th Mar) Suppose that the random variables X,Y, Z are jointly

defined on a probability space. Prove that

(a) E(X) = E(EX]Y)),
(b) E(Y]Z) = E(E(Y|X, Z)|2).

. Prove the following general version of Bayes’s formula. Given the probability space

(Q, F,P) and let G be a sub-c-algebra of F. Let G € G and A € F with P(A) > 0. Show
that
[P (A|G)dP

_ G
P (G]4) = [P (A|G)dP’

. Prove the conditional variance formula

Var(X) = E [Var(X|Y)] + Var (E [X|Y])

where Var(X|Y) = E [X?|Y] — (E[X|Y])%.

*Most of the exercises by courtesy of Kéroly Simon, some of them by courtesy of Balint Téth.
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8. Let Xy, Xs,... beiid. random variables and N be a non-negative integer valued random
variable which is independent of X;, i > 1. Prove that
N
Var <Z Xi> — E [N] Var(X) + (E [X])?Var(N).
i=1
9. Let X be a random variable. Assume that Y is another random variable for which
P(Y=0orY =1) = 1. Prove that Y € o(X) iff there exists a ¢ : R — R Borel
measurable function such that Y = ¢(X).
10. Assume that X,Y are jointly continuous random variables with joint density f(x,y).
Prove that
Jyf(X,y)dy
EY|X]=%——.
J [(X.y)dy
R
11. Homework 1.C. (13th Mar) Let Y € ¢(G). Prove that
EX|G|>Y «<=VAcGE[X -14]>E[Y-1,].
12. Let X and Y be random variables on the same probability space. Prove that X and Y
are independent iff for every ¢ : R — R bounded measurable functions we have
Efp(Y)[X] = E[p(Y)].
13. Let X,Y € LY(Q, F,P) satisfying
E[X|Y]=Y and E[Y|X] = X.
Show that P(X =Y) = 1.
Hint: If X # Y, then there is a ¢ € Q such that either X < cand Y > cor X > c and
Y <ec.
Martingales
14. Homework 2.A. (20th Mar) Let N, be the counting process of a Poisson point process
with rate A = 1. (See section 2.2 in the book R. Durrett: Essentials of Stochastic Processes
for the definition.) Find E [N;|Ns] and E [Na| Nq].
15. Homework 2.B. (20th Mar) Let S,, := X; + --- + X,, where X;, X,,... are iid. with
X, ~ Exp(1). Verify that
n!
M, = ————
T A
is a martingale with respect to the natural filtration F,.
16. Homework 2.C. (20th Mar) For every i = 1,...,m let {M,Si)}oo be a martingale
n=1

with respect to {F,},—,. Show that M, := max MY is a submartingale with respect to
{Fn}-



17. Homework 3.A. (27th Mar) Let X,Y be two independent Exp(\) random variables
and Z := X +Y. Show that for any non-negative measurable h we have E [h(X)|Z] =

1 fh(t) dt.

18. Homework 3.B. (27th Mar) Let &;,&,... be a sequence of iid. random variables
with P(§; = 1) = P(§& = —1) = 1/2 and define the simple symmetric random walk
Sp =& + -+ &, For the integers k and [, define the hitting times 7", = min{n :
S, = —k} and T) = min{n : S, = [} and the stopping time given by their minimum
T =min(T_x,T7).

(a) Find E(St) by using the optional stopping theorem for the stopped martingale S,

(b) What is P(T_, < T;)? Hint: Note that the random variable Sy can only take two
values.

(c) We have shown previously that M, = S? — n is a martingale. Apply the optional
stopping theorem for M,, and T" and compute E(T).

19. Homework 3.C. (27th Mar) In the casino, a player’s winnings per unit stake on game
n are &, where {£}, 7| are iid. random variables with P(§,, = +1) = pand P(§, = —1) = ¢
with p+¢ =1 and p > 1/2. In other words with probability ¢ < 1/2 the player loses the
stake and with probability p she gets back twice of the stake. Let C), be the player’s stake
on game n. We assume that C,, is previsible, that is C,,11 € F,, := 0 (&1,...,&,) for all n.
Let Y,, denote the wealth of the player after the nth round. We assume that there is an
e > 0 such that 0 < ), < (1 —¢)Y,,_1. We call & = plogp + qlogq + log 2 the entropy.

(a) Define the function
f(z) = pln(l +z) + qIn(1l - z)

for x € [0,1]. Show that f is strictly concave. Find max,cp 1) f(2).

(b) Prove that for any previsible betting strategy C,, the process Z,, =logV,, — na is a
supermartingale. Show that this implies E(logV,, — logYy) < na. Hint: Introduce
x, = Cp/Y,_1 so that Y11 =Y, - (1 4+ x,01&,41). The function f (defined above)
appears when calculating E(log(Y,11) | Fn)-

(c¢) Show that there is a betting strategy for which 7, is a martingale and that E(logY,,—
logYy) = na is achieved. (This is sometimes called the log-optimal portfolio in
economics.)

Normal distribution

20. Let Y ~ N(u,X) in R?, Y = (Y1,Y3) and let aj,as € R. Find the distribution of
a1Y1 + a2Ys.

21. Homework 4.A. (3rd Apr) Let Y ~ N(u,Y) and let B be a non-singular matrix.
Find the distribution of X = B -Y.

22. Homework 4.B. (3rd Apr) Let X ~ N (g, X) in R". Let X; := (X3,...,X,) and
Xy = (Xpt1,...,Xn). Let 3, ¥y and ¥y the covariance matrices of X, X; and X»
respectively. Prove that X; and X, are independent if and only if

(S0
2_<0 ZZ).



23.

24.

25.

Construct a random vector (X, Y") such that both X and Y have one-dimensional normal
distribution but (X, Y’) does not have a bivariate normal distribution in the general sense
that it is not an affine transform of a standard bivariate normal vector.

Let X = (X1,...,X4) be standard multivariate normal distribution. Let ¥ be an n x n
positive semi-definite, symmetric matrix and let g € R?. Prove that there exists an affine

transformation 7' : R? — R?, such that T/(X) ~ N (i, 2).

Homework 4.C. (3rd Apr) Let X be the height of the father and let Y be the height of
the son in a sample of father-son pairs. Assume that (X,Y") is bivariate normal. Assume
that in inches

E[X]=68, E[Y] =69, ox =0y =2, p=0.5

where p is the correlation of (X,Y’). Find the conditional distribution of Y given X = 80
(6 feet 8 inches).

Martingales

26.

27.

28.

29.

Homework 5.A. (17th Apr) There are n white and n black balls in an urn. We pull
out all of them one-by-one without replacement. Whenever we pull

e a black ball we have to pay 183,
e a white ball we receive 1$.

Let Xy := 0 and X; be the amount we gained or lost after the ¢th ball was pulled. We
define

X? — (2n —1)

X
Y, = ' for1<i<2n—1, and Z; := - -
2n — 1 (2n—1i)(2n—i—1)

for 1 <4 <2n—2.

(a) Prove that Y = (Y;) and Z = (Z;) are martingales.
(b) Find Var(X;).

Homework 5.B. (17th Apr) Let &, &, ... be independent standard normal variables.
Recall that their moment generating function is M(0) = E [eefi] = "2 Let a,b e R

and define S, = Y & and X,, = e*¥ =" Prove that
k=1
(a) X, = 0as. iff b>0.
(b) X, — 0in L iff r < 2.

Extension of part (iii) of Doob’s optional stopping theorem. Let X be a supermartingale.
Let T be a stopping time with E[T] < oo as in part (iii) of Doob’s optional stopping
theorem. Assume that there is a C' such that

E[| Xy — Xy || Fra] < C
holds almost surely for all k£ > 0. Prove that E [X7] < E [X].
Let X, Z be Révalued random variables defined on the (£, F,P). Assume that
E [ez‘t~x+z‘s~z] —E [ez‘tX} E [eisZ}
for all s,t € R". Prove that X, Z are independent.
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30.
31.

32.

33.

34.

35.

Homework 5.C. (17th Apr) Construct a martingale which is not a Markov chain.

Homework 6.A. (24th Apr) Let X,, be a discrete time birth-death process (that is a
Markov chain on the non-negative integers) with transition probabilities

pi,i+1)=p;, pli,i—1)=1-p; =g
for ¢ > 1 which are all assumed to be strictly positive. We define the function

k-1 J

g:N=RY, g0)=0, gk)=1+> J[Z

=1 i1 P

(a) Prove that Z, := g(X,) is a martingale for the natural filtration.

(b) Let 0 < i < n be fixed. Find the probability that a process started from i gets to n
earlier than to 0.

Homework 6.B. (24th Apr) Let a, be a deterministic sequence of real numbers and
let {e,} be an iid. sequence of random variables satisfying P (¢, = 1) = 1. Show that

o0 o0
3" ena, converges almost surely if and only if Y a2 < oo.
n=1 n=1

Homework 6.C. (24th Apr) Let X;, X5,... be an independent sequence of random
variables with X; = 0 and for n > 2 with P (X,, = —n?) = -5 and P (Xn = n’;—il) =
1—%. Let S, :=X; +---+X,. Show that

n?’
(a) {S,} is a martingale with zero expectation which converges to co a.s.

(b) lim S,/n = 1.

n—o0

Hint: The Borel-Cantelli lemma can be useful which says that if the events Ay, Ao, ...
satisfy », P(Ax) < oo, then with probability one, only finitely many of them happen.

Homework 7.A. (3rd May)

(a) Let X = (X,) be an L? random walk that is a martingale, i.e. let Z; be iid. random
variables with 0 mean and finite variance ¢? and let X,, = Z; + - - - + Z,. Prove that

the angle bracket process of X is A,, = no?.

(b) Let X, be an L? martingale with angle bracket process A,. Let C,, be previsible and
also L2. Prove that the angle bracket process of the martingale transform Y = C e X
is given by C? e A.

Homework 7.B. (3rd May) Let M = (M,,) be a martingale with My = 0 and | M} —
My_1| < C for a C € R. Let T be a stopping time which is finite a.s. and define

n

Up =Y (My— My1)*ysp, Va=2 D (M= M;y)(M; — Mj_1)1r>;,

k=1 1<i<j<n
Us = Y (Mg = My1)*Lrsp, Ve =2 Y (M; = Miy)(M; — Mj_1)Lys;.
k=1 1<i<j

(a) Prove that M2, = U, + V, and M? = Uy, + V.
(b) Assume further that E [T?] < co. Show that lim U, = U, a.s. and E [U,] < o0
n—oo
and E[V,] = E[V,] =0.



(c) Conclude that if E [T?] < oo, then lim E[M3,,] = E [M3].

n—o0

36. Homework 7.C. (3rd May) Wald equalities. Let Y7, Y5, ... beiid. L' random variables.
Let S, :=Y; +---+Y, and we write p = E[Y;]. Let T be a stopping time satisfying
E[T] < 0.

(a) Prove that
E[S7] = p-E[T].
(b) Assume further that Y; are uniformly bounded (3C € R with |Y;| < C') and E [T?] <
0o. We write 02 = Var(Y;). Then
E [(Sr—uT)’] =o® - E[T].

Hint: Introduce an appropriate martingale and apply the result of the previous
exercise.

37. Homework 8.A. (10th May) A branching process Z = (Z,)2, is defined recursively
by a given family of non-negative integer valued iid. random variables {X,g")}zo as
follows: "

Zo =1, Zppr =XV 4 XU >0
Let p =E [X,gn)] and F,, = (2o, Z1, ... Z,). We write f(s) for the generating function
of the offspring distribution, that is

for any k£ and n. Further, let
{extinction} ={Z, — 0} = {3n, Z, =0}, {explosion} ={Z, — oo}

and denote ¢ = P (extinction). Recall that ¢ is the smaller (if there are two) fixed point
of f(s), that is ¢ is the smallest solution of f(q) = q.
(a) Prove by induction that E[Z,] = u™.

(b) Show that E [s7n+1|F,] = f(s)?" for every s > 0. Explain that ¢”* is a martingale

and lim Z, = Z,, exists a.s.
n—oo

(¢) Let T =min{n : Z, = 0} be the extinction time with 7" = co if Z,, > 0 always. Prove
by dominated convergence that ¢ = E [¢77] = E [¢7* - Ir—o] + E [¢77 - 174 ].

(d) Prove that E [¢7~ - 17_] = 0.
(e) Conclude that if T'(w) = oo then Z,, = 0o, hence

P (extinction) + P (explosion) = 1.

38. Homework 8.B. (10th May) Assume that for the offspring distribution of the branch-
ing process Z,, we have

pw=E [X,g")} < o0 and 0 < 0 = Var(X[™) < oo.

Prove that



39.

40.

41.

42.

43.

44.

45.

46.

(a) M, = Z,/u" is a martingale for the natural filtration F,.

(b) Show that E [Z2,,|F,] = p*Z2 + 0°Z, and conclude that the martingale M, is
bounded in L? if and only if u > 1.

(c) Assume that p > 1 which implies that M., = lim M, exists in L? and a.s. Prove

n—oo
that

0.2

plp—1)

Homework 8.C. (10th May) Let X;, Xs, ... beiid. random variables with a continuous
distribution function. Let E; be the event that a record occurs at time n. That is Ey = Q)
and E, = {X, > X,,, Ym <n}. Prove that {E;};°, are independent and P (E;) = 1/i.
Hint: For the independence show that for any iy < --- < i, one has P(E;, |E;, ... E;,) =
1/21 and write ].:)(Ewl1 e Ezn) = H?:l P(EZJ |Ez .. Ezn)

Var(M.,) =

j+1 "

Let Fy, Es, ... be independent with P (E;) = 1/i. Let Y; := 1g, and N,, :== Y, +---+Y,,.
In the special case of the previous homework, N, is the number of records until time n.

o
(a) Prove that > % converges almost surely.
k=2

Nn

; =1 a.s.
ogn

(b) Using Kronecker’s lemma conclude that lim
n—o0

Assume that in the branching process Z,,, ¢ = 1 where ¢ is the probability of extinction.
Prove that M, = Z,/u" is not a uniformly integrable martingale.

Homework 9.A (17th May) Let C be a class of random variables of (2, 7, P). Assume
that C is L” bounded for some p > 1, that is, Ip > 1 and A € R such that E[|X|?] < A
for all X € C. Show that then C is UL

Let C be a class of random variables of (2, F,P). Assume that C is dominated by an
integrable random variable, that is 3Y € L'(Q, F,P) such that | X| <Y as. VX € C.
Show that then C is UL

Homework 9.B (17th May) Let C be a class of random variables on (2, 7, P). Prove
that C is Ul if and only if the following two conditions hold

(a) Cis L'-bounded, that is sup {E[|X]] : X € C} < co and
(b) Ve >0, 35 > 0 s.t.

FeFand P(F) <0 = E[|X]|lp] <eforall X €C.

Let C and D be UI classes of random variables. Prove that
C+D={X+Y:XeCandY €D}
is also Ul. Hint: Use the previous exercise.

Let C be a UI family of random variables. Let us define
D :={Y :3X € C, 3G sub-o-algebra of F s.t. Y = E[X|G]}.

Prove that D is also Ul



47. Homework 9.C (17th May) Let X, X», ... be iid. random variables with E [X "] = co

48.

49.

20.

and E[X 7] < oo. (Recall X = XT — X~ and X*, X~ > 0.) Use the SLLN to prove that

S,/n — oo a.s. where S, := X; + ---+ X,,. Hint: For M > 0 let X = X; A M and

SM = XM+ ..+ XM Explain why lim S /n =E [X}] and liminf S, /n > lim S} /n.
n—oo n—oo

n—oo

Homework 10.A (24th May) (infinite monkey theorem) Prove that a monkey typing
at random on a typewriter for infine time will type the complete works of Shakespeare
eventually.

Homework 10.B (24th May) (Azuma-Hoeffding inequality)

(a) Assume that Y is a random variable which takes values from [—¢,¢] and E[Y] =0
holds. Prove that for all # € R we have

1
E [eey} < cosh(fc) < exp (50202) :

Hint: Let f(z) := exp(0z), z € [—¢, ¢]. Then by the convexity of f we have

c+y
2c

f) < =Lf(—e)+

- (o)

Use Taylor expansion for the second inequality.

(b) Let M be a martingale with My = 0 such that for a sequence of positive numbers
{en}o2, we have |M,, — M, _,| < ¢, for all n. Then the following inequality holds for

all x > 0:
1 n
P <supMk > x) < exp ——xQ/Zci )
ksn 2 k=1

Hint: Use submartingale inequlaity as in the proof of LIL. Then present M, (in
the exponent) like a telescopic sum of its increments. Write the expectation of the
product as the expectation of a conditional expectation with respect to the o-algebra
generated by the first n — 1 increments. Use the first part of this exercise for the
conditional expectation, iterate and optimize in 6.

Homework 10.C (24th May) m balls are placed one by one into n urns independently
at random with uniform distribution among the urns. Let F, be the o-algebra generated
by the place of the first £ balls and define the martingale M) = E(N|Fy) where N is the
number of empty urns after placing the last ball. Let Y, be the number of empty urns
after placing the kth ball. Show that

(a) My =Y (=)™
(b) | My — My_y| < (=2)"7",

()
P(IN —p| >¢) <2exp <_M)

”2—M2

where y = EN =n ("_1)m.

Hint: For part (b) note that the possible values of Y} are Yj_; or Y;_; — 1. For part (c)
use the Azuma—Hoeffding inequality for the martingales M, — p and —M} + p.



51. (Exercise for Markov chain CLT) Consider the following Markov chain {X,}~ . The
state space is Z. The transition probabilities are p(0,1) = p(0,—1) = 3 and for an
arbitrary = € N* we have

1 1
p(z,xz+ 1) =p(z,0) = =, p(—z,—z —1) = p(—z,0) = =.
2 2

(a) Find the stationary measure w for X,,.

(b) Define the operator P : L*(Z,7) — LY(Z,7) by (Pg)(i) := >_ p(i,5)g(j) and let I
€T

be the identity on L'(Z, ), i.e. P acts on g as a multiplication of an infinite matrix

and an infinite vector. Further, let f : Z — R be an arbitrary function satisfying

the following conditions:

Vo € Z, f(zx) = —f(—z), and Ja < V2 s.t. f(z) < a*! for all z large enough.

For example polynomials of the form f(z) = Y by;_jz* 1.
i=1

(c) Construct a function g € L?(w) such that ((I — P)-g)(i) = f(i).

(d) From now on we always assume that f(z) = x73. Determine
0 = Ex [(9(X1) — E(9(X1)|F0))"] -

(e) Prove that P (=30v/n < f(X1) + -+ f(X,) < 30y/n) > 0.99 for sufficiently large
n.



