Markov processes and martingales 1st midterm test

22nd Mar 2021

1. Let S_{n} denote the simple symmetric random walk, that is, $S_{0}=0$ and $S_{n}=X_{1}+\cdots+X_{n}$ where X_{1}, X_{2}, \ldots is an iid. sequence of random variables distributed as $\mathbf{P}\left(X_{1}=1\right)=$ $\mathbf{P}\left(X_{1}=-1\right)=1 / 2$. Let $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$.
(a) (2 points) Compute $\mathbf{E}\left(S_{n+1}^{3} \mid \mathcal{F}_{n}\right)$ by using that $S_{n+1}=S_{n}+X_{n+1}$.
(b) (2 points) Check that $M_{n}=S_{n}^{3}-3 n S_{n}$ is a martingale adapted to the filtration \mathcal{F}_{n}.
(c) (2 points) For two positive integers a, b, define the hitting times $T_{-a}=\inf \left\{n: S_{n}=\right.$ $-a\}, T_{b}=\inf \left\{n: S_{n}=b\right\}$ and $T=\min \left\{T_{-a}, T_{b}\right\}$. Apply the optional stopping theorem ${ }^{1}$ for M_{n} and T to conclude that $\mathbf{E}\left(M_{T}\right)=0$.
(d) (2 points) By computing $\mathbf{E}\left(S_{T}\right)^{2}$ directly, determine the covariance of T and S_{T}. The facts $\mathbf{P}\left(T_{-a}<T_{b}\right)=b /(a+b)$ and $\mathbf{E}(T)=a b$ can be used without a proof.
2. In a population of fishes let X_{1} denote the weight of a fish in grams and let X_{2} be its speed in km / h. The random vector $\mathbf{X}=\left(X_{1}, X_{2}\right)$ has bivariate normal distribution where the weight has mean 80 and variance 100 , the speed has mean 5 and variance 4 and the two components have correlation $-1 / 2$.
(a) (1 point) Write down the covariance matrix of the vector \mathbf{X}.
(b) (3 points) What is the distribution of the speed of a fish in the population which has weight 70 g ? Recall from the lecture that the parameters of the conditional normal distribution are $\mu_{X \mid Y}=\mu_{X}+\Sigma_{X Y} \Sigma_{Y Y}^{-1}\left(Y-\mu_{Y}\right)$ and $\Sigma_{X \mid Y}=\Sigma_{X X}-\Sigma_{X Y} \Sigma_{Y Y}^{-1} \Sigma_{Y X}$.
(c) (3 points) For which value of the parameter $p \in \mathbb{R}$ is the variance of $Y_{p}=2 X_{1}+p X_{2}$ minimal. For that value of p, what is the distribution of Y_{p} ?
[^0]
[^0]: ${ }^{1}$ The conditions of the optional stopping theorem are not satisfied because $M_{n \wedge T}$ does not have bounded increments, dominate convergence can be used instead.
 ${ }^{2}$ It should have been $\mathbf{E}\left(S_{T}^{3}\right)$.

