Exercises in Markov processes and martingales*

2020/21 spring semester

Conditional expectation

1. We roll two dices. X is the result of one of them and Z the sum of the results. Find $\mathbf{E}[Z \mid X]$ and $\mathbf{E}[X \mid Z]$.
2. Let $(\Omega, \mathcal{F}, \mathbf{P})$ be the probability space where $\Omega=[0,1], \mathcal{F}$ is the Borel σ-algebra and \mathbf{P} is the Lebesgue measure on it. Define the random variables $X(\omega)=3 \omega^{2}$ and $Y(\omega)=\mathbb{1}(\omega \in$ $[1 / 2,1])-\mathbb{1}(\omega \in[0,1 / 2))$ for any $\omega \in \Omega$. What is $\mathbf{E}(X \mid Y)$?
3. Let $\Omega=\{-1,0,+1\}, \mathcal{F}=2^{\Omega}$ and $\mu(\{-1\})=\mu(\{0\})=\mu(\{+1\})=1 / 3$. Consider also the sub- σ-algebras

$$
\mathcal{G}=\{\emptyset,\{-1\},\{0,+1\}, \Omega\}, \quad \mathcal{H}=\{\emptyset,\{-1,0\},\{+1\}, \Omega\} .
$$

Let $X: \Omega \rightarrow \mathbb{R}$ be the random variable $X(\omega)=\omega$. Compute $\mathbf{E}(\mathbf{E}(X \mid \mathcal{G}) \mid \mathcal{H})$ and $\mathbf{E}(\mathbf{E}(X \mid \mathcal{H}) \mid \mathcal{G})$.
4. Homework 1.A. (22nd Feb) Let $X_{j}, j=1,2, \ldots$ be iid. random variables with common distribution $\mathbf{P}\left(X_{j}=-1\right)=\mathbf{P}\left(X_{j}=+1\right)=1 / 2$ and let $S_{n}=X_{1}+\cdots+X_{n}$. Compute the conditional expectations $\mathbf{E}\left(X_{1} \mid S_{n}\right), \mathbf{E}\left(S_{n} \mid X_{1}\right)$ and $\mathbf{E}\left(S_{n+m}^{2} \mid S_{n}\right)$.
5. Suppose that the random variables X, Y, Z are jointly defined on a probability space. Prove that
(a) $\mathbf{E}(X)=\mathbf{E}(\mathbf{E}(X \mid Y))$,
(b) $\mathbf{E}(Y \mid Z)=\mathbf{E}(\mathbf{E}(Y \mid X, Z) \mid Z)$.
6. Prove the following general version of Bayes's formula. Given the probability space $(\Omega, \mathcal{F}, \mathbf{P})$ and let \mathcal{G} be a sub- σ-algebra of \mathcal{F}. Let $G \in \mathcal{G}$ and $A \in \mathcal{F}$ with $\mathbf{P}(A)>0$. Show that

$$
\mathbf{P}(G \mid A)=\frac{\int_{G} \mathbf{P}(A \mid \mathcal{G}) \mathrm{d} \mathbf{P}}{\int_{\Omega} \mathbf{P}(A \mid \mathcal{G}) \mathrm{d} \mathbf{P}}
$$

7. Prove the conditional variance formula

$$
\operatorname{Var}(X)=\mathbf{E}[\operatorname{Var}(X \mid Y)]+\operatorname{Var}(\mathbf{E}[\mathrm{X} \mid \mathrm{Y}])
$$

where $\operatorname{Var}(X \mid Y)=\mathbf{E}\left[X^{2} \mid Y\right]-(\mathbf{E}[X \mid Y])^{2}$.

[^0]8. Homework 1.B. (22nd Feb) Let X_{1}, X_{2}, \ldots be iid. random variables and N be a non-negative integer valued random variable which is independent of $X_{i}, i \geq 1$. Prove that
$$
\operatorname{Var}\left(\sum_{i=1}^{N} X_{i}\right)=\mathbf{E}[N] \operatorname{Var}(X)+(\mathbf{E}[X])^{2} \operatorname{Var}(N)
$$
9. Let X be a random variable. Assume that Y is another random variable for which $\mathbf{P}(Y=0$ or $Y=1)=1$. Prove that $Y \in \sigma(X)$ iff there exists a $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ Borel measurable function such that $Y=\varphi(X)$.
10. Assume that X, Y are jointly continuous random variables with joint density $f(x, y)$. Prove that
$$
\mathbf{E}[Y \mid X]=\frac{\int_{\mathbb{R}} y f(X, y) \mathrm{d} y}{\int_{\mathbb{R}} f(X, y) \mathrm{d} y}
$$
11. Let $Y \in \sigma(\mathcal{G})$. Prove that
$$
\mathbf{E}[X \mid \mathcal{G}] \geq Y \Longleftrightarrow \forall A \in \mathcal{G} \mathbf{E}\left[X \cdot \mathbb{1}_{A}\right] \geq \mathbf{E}\left[Y \cdot \mathbb{1}_{A}\right]
$$
12. Homework 1.C. (22nd Feb) Let X and Y be random variables on the same probability space. Prove that X and Y are independent iff for every $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ bounded measurable functions we have
$$
\mathbf{E}[\varphi(Y) \mid X]=\mathbf{E}[\varphi(Y)] .
$$
13. Let $X, Y \in L^{1}(\Omega, \mathcal{F}, \mathbb{P})$ satisfying
$$
\mathbf{E}[X \mid Y]=Y \text { and } \mathbf{E}[Y \mid X]=X
$$

Show that $\mathbf{P}(X=Y)=1$.
Hint: If $X \neq Y$, then there is a $c \in \mathbb{Q}$ such that either $X \leq c$ and $Y>c$ or $X>c$ and $Y \leq c$.

Martingales

14. Homework 2.A. (1st Mar) Let X_{t} be the counting process of a Poisson point process with rate $\lambda=1$. (See Durrett's book p. 139 for the definition.) Find $\mathbf{E}\left[X_{1} \mid X_{2}\right]$ and $\mathbf{E}\left[X_{2} \mid X_{1}\right]$.
15. Homework 2.B. (1st Mar) Let $S_{n}:=X_{1}+\cdots+X_{n}$ where X_{1}, X_{2}, \ldots are iid. with $X_{1} \sim \operatorname{Exp}(1)$. Verify that

$$
M_{n}:=\frac{n!}{\left(1+S_{n}\right)^{n+1}} \cdot e^{S_{n}}
$$

is a martingale with respect to the natural filtration \mathcal{F}_{n}.
16. Homework 2.C. (1st Mar) For every $i=1, \ldots, m$ let $\left\{M_{n}^{(i)}\right\}_{n=1}^{\infty}$ be a sequence of martingales with respect to $\left\{\mathcal{F}_{n}\right\}_{n=1}^{\infty}$. Show that $M_{n}:=\max _{1 \leq i \leq m} M_{n}^{(i)}$ is a submartingale with respect to $\left\{\mathcal{F}_{n}\right\}$.
17. Homework 3.A. (8th Mar) Let X, Y be two independent $\operatorname{Exp}(\lambda)$ random variables and $Z:=X+Y$. Show that for any non-negative measurable h we have $\mathbb{E}[h(X) \mid Z]=$ $\frac{1}{Z} \int_{0}^{Z} h(t) \mathrm{d} t$.
18. Homework 3.B. (8th Mar) Let ξ_{1}, ξ_{2}, \ldots be a sequence of iid. random variables with $\mathbf{P}\left(\xi_{1}=1\right)=\mathbf{P}\left(\xi_{1}=-1\right)=1 / 2$ and define the simple symmetric random walk $S_{n}=$ $\xi_{1}+\cdots+\xi_{n}$. For the integers k and l, define the hitting times $T_{-k}=\inf \left\{n: S_{n}=-k\right\}$ and $T_{l}=\inf \left\{n: S_{n}=l\right\}$ and the stopping time given by their minimum $T=\min \left(T_{-k}, T_{l}\right)$.
(a) Find $\mathbf{E}\left(S_{T}\right)$ by using the optional stopping theorem for the martingale S_{n}.
(b) What is $\mathbf{P}\left(T_{-k}<T_{l}\right)$? Hint: Note that the random variable S_{T} can only take two values.
(c) We have shown previously that $M_{n}=S_{n}^{2}-n$ is a martingale. Apply the optional stopping theorem for M_{n} and T and compute $\mathbf{E}(T)$.
19. Homework 3.C. (8th Mar) In the casino, a player's winnings per unit stake on game n are ξ_{n} where $\{\xi\}_{n=1}^{\infty}$ are iid. random variables with $\mathbf{P}\left(\xi_{n}=+1\right)=p$ and $\mathbf{P}\left(\xi_{n}=-1\right)=q$ with $p+q=1$ and $p>1 / 2$. In other words with probability $q<1 / 2$ the player loses the stake and with probability p she gets back twice of the stake. Let C_{n} be the player's stake on game n. We assume that C_{n} is previsible, that is $C_{n+1} \in \mathcal{F}_{n}:=\sigma\left(\xi_{1}, \ldots, \xi_{n}\right)$ for all n. Let Y_{n} denote the wealth of the player after the nth round. We assume that there is an $\varepsilon>0$ such that $0 \leq C_{n} \leq(1-\varepsilon) Y_{n-1}$. We call $\alpha=p \log p+q \log q+\log 2$ the entropy.
(a) Define the function

$$
f(x)=p \ln (1+x)+q \ln (1-x)
$$

for $x \in[0,1]$. Show that f is strictly concave. Find $\max _{x \in[0,1]} f(x)$.
(b) Prove that for any previsible betting strategy C_{n}, the process $Z_{n}=\log Y_{n}-n \alpha$ is a supermartingale. Show that this implies $\mathbf{E}\left(\log Y_{n}-\log Y_{0}\right) \leq n \alpha$. Hint: Introduce $x_{n}=C_{n} / Y_{n-1}$ so that $Y_{n+1}=Y_{n} \cdot\left(1+x_{n+1} \xi_{n+1}\right)$. The function f (defined above) appears when calculating $\mathbf{E}\left(\log \left(Y_{n+1}\right) \mid \mathcal{F}_{n}\right)$.
(c) Show that there is a betting strategy for which Z_{n} is a martingale and that $\mathbf{E}\left(\log Y_{n}-\right.$ $\left.\log Y_{0}\right)=n \alpha$ is achieved. (This is sometimes called the log-optimal portfolio in economics.)

Normal distribution

20. Let $\mathbf{Y} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$ in $\mathbb{R}^{2}, \mathbf{Y}=\left(Y_{1}, Y_{2}\right)$ and let $a_{1}, a_{2} \in \mathbb{R}$. Find the distribution of $a_{1} Y_{1}+a_{2} Y_{2}$.
21. Let $\mathbf{Y} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$ and let B be a non-singular matrix. Find the distribution of $\mathbf{X}=B \cdot \mathbf{Y}$.
22. Homework 4.A. (17th Mar) Let $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$ in \mathbb{R}^{n}. Let $\mathbf{X}_{1}:=\left(X_{1}, \ldots, X_{p}\right)$ and $\mathbf{X}_{2}:=\left(X_{p+1}, \ldots, X_{n}\right)$. Let Σ, Σ_{1} and Σ_{2} the covariance matrices of X, X_{1} and X_{2} respectively. Prove that \mathbf{X}_{1} and \mathbf{X}_{2} are independent if and only if

$$
\Sigma=\left(\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & \Sigma_{2}
\end{array}\right)
$$

23. Homework 4.B. (17th Mar) Construct a random vector (X, Y) such that both X and Y have one-dimensional normal distribution but (X, Y) does not have a bivariate normal distribution in the general sense that it is not an affine transform of a standard bivariate normal vector.
24. Let $\mathbf{X}=\left(X_{1}, \ldots, X_{d}\right)$ be standard multivariate normal distribution. Let Σ be an $n \times n$ positive semi-definite, symmetric matrix and let $\boldsymbol{\mu} \in \mathbb{R}^{d}$. Prove that there exists an affine transformation $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, such that $T(\mathbf{X}) \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$.
25. Homework 4.C. (17th Mar) Let X be the height of the father and let Y be the height of the son in a sample of father-son pairs. Assume that (X, Y) is bivariate normal. Assume that in inches

$$
\mathbf{E}[X]=68, \mathbf{E}[Y]=69, \sigma_{X}=\sigma_{Y}=2, \rho=0.5
$$

where ρ is the correlation of (X, Y). Find the conditional distribution of Y given $X=80$ (6 feet 8 inches).

Martingales

26. Homework 5.A. (22nd Mar) There are n white and n black balls in an urn. We pull out all of them one-by-one without replacement. Whenever we pull

- a black ball we have to pay $1 \$$,
- a white ball we receive $1 \$$.

Let $X_{0}:=0$ and X_{i} be the amount we gained or lost after the i th ball was pulled. We define
$Y_{i}:=\frac{X_{i}}{2 n-i}$ for $1 \leq i \leq 2 n-1, \quad$ and $\quad Z_{i}:=\frac{X_{i}^{2}-(2 n-i)}{(2 n-i)(2 n-i-1)}$ for $1 \leq i \leq 2 n-2$.
(a) Prove that $Y=\left(Y_{i}\right)$ and $Z=\left(Z_{i}\right)$ are martingales.
(b) Find $\operatorname{Var}\left(X_{i}\right)$.
27. Homework 5.B. (22nd Mar) Let ξ_{1}, ξ_{2}, \ldots be independent standard normal variables. Recall that their moment generating function is $M(\theta)=\mathbf{E}\left[e^{\theta \xi_{i}}\right]=e^{\theta^{2} / 2}$. Let $a, b \in \mathbb{R}$ and define $S_{n}=\sum_{k=1}^{n} \xi_{k}$ and $X_{n}=e^{a S_{n}-b n}$. Prove that
(a) $X_{n} \rightarrow 0$ a.s. iff $b>0$.
(b) $X_{n} \rightarrow 0$ in L^{r} iff $r<\frac{2 b}{a^{2}}$.
28. Homework 5.C. (22nd Mar) Extension of part (iii) of Doob's optional stopping theorem. Let X be a supermartingale. Let T be a stopping time with $\mathbf{E}[T]<\infty$ as in part (iii) of Doob's optional stopping theorem. Assume that there is a C such that

$$
\mathbf{E}\left[\mid X_{k}-X_{k-1} \| \mathcal{F}_{k-1}\right] \leq C
$$

holds almost surely for all $k>0$. Prove that $\mathbf{E}\left[X_{T}\right] \leq \mathbf{E}\left[X_{0}\right]$.
29. Let \mathbf{X}, \mathbf{Z} be \mathbb{R}^{d}-valued random variables defined on the $(\Omega, \mathcal{F}, \mathbb{P})$. Assume that

$$
\mathbf{E}\left[e^{i \mathbf{t} \cdot \mathbf{X}+i s \cdot \mathbf{Z}}\right]=\mathbf{E}\left[e^{i \mathbf{t} \mathbf{X}}\right] \cdot \mathbf{E}\left[e^{i s \mathbf{Z}}\right]
$$

for all $\mathbf{s}, \mathbf{t} \in \mathbb{R}^{n}$. Prove that \mathbf{X}, \mathbf{Z} are independent.
30. Construct a martingale which is not a Markov chain.
31. Homework 6.A. (31st Mar) Let X_{n} be a discrete time birth-death process (that is a Markov chain on the non-negative integers) with transition probabilities

$$
p(i, i+1)=p_{i}, \quad p(i, i-1)=1-p_{i}=q_{i}
$$

for $i \geq 1$ which are all assumed to be strictly positive. We define the function

$$
g: \mathbb{N} \rightarrow \mathbb{R}^{+}, \quad g(0)=0, \quad g(k)=1+\sum_{j=1}^{k-1} \prod_{i=1}^{j} \frac{q_{i}}{p_{i}}
$$

(a) Prove that $Z_{n}:=g\left(X_{n}\right)$ is a martingale for the natural filtration.
(b) Let $0<i<n$ be fixed. Find the probability that a process started from i gets to n earlier than to 0 .
32. Homework 6.B. (31st Mar) Let a_{n} be a deterministic sequence of real numbers and let $\left\{\varepsilon_{n}\right\}$ be an iid. sequence of random variables satisfying $\mathbb{P}\left(\varepsilon_{n}= \pm 1\right)=\frac{1}{2}$. Show that $\sum_{n=1}^{\infty} \varepsilon_{n} a_{n}$ converges almost surely if and only if $\sum_{n=1}^{\infty} a_{n}^{2}<\infty$.
33. Homework 6.C. (31st Mar) Let X_{1}, X_{2}, \ldots be an independent sequence of random variables with $X_{1}=0$ and for $n \geq 2$ with $\mathbf{P}\left(X_{n}=-n^{2}\right)=\frac{1}{n^{2}}$ and $\mathbf{P}\left(X_{n}=\frac{n^{2}}{n^{2}-1}\right)=$ $1-\frac{1}{n^{2}}$. Let $S_{n}:=X_{1}+\cdots+X_{n}$. Show that
(a) $\left\{S_{n}\right\}$ is a martingale with zero expectation which converges to ∞ a.s.
(b) $\lim _{n \rightarrow \infty} S_{n} / n=1$.

Hint: The Borel-Cantelli lemma can be useful which says that if the events A_{1}, A_{2}, \ldots satisfy $\sum_{k} \mathbf{P}\left(A_{k}\right)<\infty$, then with probability one, only finitely many of them happen.
34. Homework 7.A. (12th Apr)
(a) Let $X=\left(X_{n}\right)$ be an L^{2} random walk that is a martingale, i.e. let Z_{k} be iid. random variables with 0 mean and finite variance σ^{2} and let $X_{n}=Z_{1}+\cdots+Z_{n}$. Prove that the angle bracket process of X is $A_{n}=n \sigma^{2}$.
(b) Let X_{n} be an L^{2} martingale with angle bracket process A_{n}. Let C_{n} be previsible and also L^{2}. Prove that the angle bracket process of the martingale transform $Y=C \bullet X$ is given by $C^{2} \bullet A$.
35. Homework 7.B. (12th Apr) Let $M=\left(M_{n}\right)$ be a martingale with $M_{0}=0$ and $\mid M_{k}-$ $M_{k-1} \mid<C$ for a $C \in \mathbb{R}$. Let T be a stopping time which is finite a.s. and define

$$
\begin{aligned}
U_{n} & =\sum_{k=1}^{n}\left(M_{k}-M_{k-1}\right)^{2} \mathbb{1}_{T \geq k},
\end{aligned} \quad V_{n}=2 \sum_{1 \leq i<j \leq n}\left(M_{i}-M_{i-1}\right)\left(M_{j}-M_{j-1}\right) \mathbb{1}_{T \geq j}, ~\left(M_{i}-M_{i-1}\right)\left(M_{j}-M_{j-1}\right) \mathbb{1}_{T \geq j} .
$$

(a) Prove that $M_{T \wedge n}^{2}=U_{n}+V_{n}$ and $M_{T}^{2}=U_{\infty}+V_{\infty}$.
(b) Assume further that $\mathbf{E}\left[T^{2}\right]<\infty$. Show that $\lim _{n \rightarrow \infty} U_{n}=U_{\infty}$ a.s. and $\mathbf{E}\left[U_{\infty}\right]<\infty$ and $\mathbf{E}\left[V_{n}\right]=\mathbf{E}\left[V_{\infty}\right]=0$.
(c) Conclude that if $\mathbf{E}\left[T^{2}\right]<\infty$, then $\lim _{n \rightarrow \infty} \mathbf{E}\left[M_{T \wedge n}^{2}\right]=\mathbf{E}\left[M_{T}^{2}\right]$.
36. Homework 7.C. (12th Apr) Wald equalities. Let Y_{1}, Y_{2}, \ldots be iid. L^{1} random variables. Let $S_{n}:=Y_{1}+\cdots+Y_{n}$ and we write $\mu=\mathbf{E}\left[Y_{i}\right]$. Let T be a stopping time satisfying $\mathbf{E}[T]<\infty$.
(a) Prove that

$$
\mathbf{E}\left[S_{T}\right]=\mu \cdot \mathbf{E}[T]
$$

(b) Assume further that Y_{i} are bounded $\left(\exists C_{i} \in \mathbb{R}\right.$ with $\left.\left|Y_{i}\right|<C_{i}\right)$ and $\mathbf{E}\left[T^{2}\right]<\infty$. We write $\sigma^{2}=\operatorname{Var}\left(Y_{i}\right)$. Then

$$
\mathbf{E}\left[\left(S_{T}-\mu T\right)^{2}\right]=\sigma^{2} \cdot \mathbf{E}[T]
$$

Hint: Introduce an appropriate martingale and apply the result of the previous exercise.
37. Homework 8.A. (19th Apr) A branching process $Z=\left(Z_{n}\right)_{n=0}^{\infty}$ is defined recursively by a given family of non-negative integer valued iid. random variables $\left\{X_{k}^{(n)}\right\}_{k, n=1}^{\infty}$ as follows:

$$
Z_{0}:=1, \quad Z_{n+1}:=X_{1}^{(n+1)}+\cdots+X_{Z_{n}}^{(n+1)}, \quad n \geq 0
$$

Let $\mu=\mathbf{E}\left[X_{k}^{(n)}\right]$ and $\mathcal{F}_{n}=\sigma\left(Z_{0}, Z_{1}, \ldots Z_{n}\right)$. We write $f(s)$ for the generating function of the offspring distribution, that is

$$
f(s)=\mathbf{E}\left(s^{X_{k}^{(n)}}\right)=\sum_{m=0}^{\infty} \mathbf{P}\left(X_{k}^{(n)}=m\right) s^{m}
$$

for any k and n. Further, let

$$
\{\text { extinction }\}=\left\{Z_{n} \rightarrow 0\right\}=\left\{\exists n, Z_{n}=0\right\}, \quad\{\operatorname{explosion}\}=\left\{Z_{n} \rightarrow \infty\right\}
$$

and denote $q=\mathbf{P}$ (extinction). Recall that q is the smaller (if there are two) fixed point of $f(s)$, that is q is the smallest solution of $f(q)=q$.
(a) Prove by induction that $\mathbf{E}\left[Z_{n}\right]=\mu^{n}$.
(b) Show that $\mathbf{E}\left[s^{Z_{n+1}} \mid \mathcal{F}_{n}\right]=f(s)^{Z_{n}}$ for every $s \geq 0$. Explain that $q^{Z_{n}}$ is a martingale and $\lim _{n \rightarrow \infty} Z_{n}=Z_{\infty}$ exists a.s.
(c) Let $T=\min \left\{n: Z_{n}=0\right\}$ be the extinction time with $T=\infty$ if $Z_{n}>0$ always. Prove by dominated convergence that $q=\mathbf{E}\left[q^{Z_{T}}\right]=\mathbf{E}\left[q^{Z_{\infty}} \cdot \mathbb{1}_{T=\infty}\right]+\mathbf{E}\left[q^{Z_{T}} \cdot \mathbb{1}_{T<\infty}\right]$.
(d) Prove that $\mathbf{E}\left[q^{Z_{\infty}} \cdot \mathbb{1}_{T=\infty}\right]=0$.
(e) Conclude that if $T(\omega)=\infty$ then $Z_{\infty}=\infty$, hence

$$
\mathbf{P}(\text { extinction })+\mathbf{P}(\text { explosion })=1
$$

38. Homework 8.B. (19th Apr) Assume that for the offspring distribution of the branching process Z_{n}, we have

$$
\mu=\mathbf{E}\left[X_{k}^{(n)}\right]<\infty \text { and } 0<\sigma^{2}=\operatorname{Var}\left(X_{k}^{(n)}\right)<\infty
$$

Prove that
(a) $M_{n}=Z_{n} / \mu^{n}$ is a martingale for the natural filtration \mathcal{F}_{n}.
(b) Show that $\mathbf{E}\left[Z_{n+1}^{2} \mid \mathcal{F}_{n}\right]=\mu^{2} Z_{n}^{2}+\sigma^{2} Z_{n}$ and conclude that the martingale M_{n} is bounded in L^{2} if and only if $\mu>1$.
(c) Assume that $\mu>1$ which implies that $M_{\infty}=\lim _{n \rightarrow \infty} M_{n}$ exists in L^{2} and a.s. Prove that

$$
\operatorname{Var}\left(M_{\infty}\right)=\frac{\sigma^{2}}{\mu(\mu-1)} .
$$

39. Homework 8.C. (19th Apr) Let X_{1}, X_{2}, \ldots be iid. random variables with a continuous distribution function. Let E_{i} be the event that a record occurs at time n. That is $E_{1}=\Omega$ and $E_{n}=\left\{X_{n}>X_{m}, \forall m<n\right\}$. Prove that $\left\{E_{i}\right\}_{i=1}^{\infty}$ are independent and $\mathbf{P}\left(E_{i}\right)=1 / i$. Hint: For the independence show that for any $i_{1}<\cdots<i_{n}$ one has $\mathbf{P}\left(E_{i_{1}} \mid E_{i_{2}} \ldots E_{i_{n}}\right)=$ $1 / i_{1}$ and write $\mathbf{P}\left(E_{i_{1}} \ldots E_{i_{n}}\right)=\prod_{j=1}^{n} \mathbf{P}\left(E_{i_{j}} \mid E_{i_{j+1}} \ldots E_{i_{n}}\right)$.
40. Let E_{1}, E_{2}, \ldots be independent with $\mathbf{P}\left(E_{i}\right)=1 / i$. Let $Y_{i}:=\mathbb{1}_{E_{i}}$ and $N_{n}:=Y_{1}+\cdots+Y_{n}$. In the special case of the previous homework, N_{n} is the number of records until time n.
(a) Prove that $\sum_{k=2}^{\infty} \frac{Y_{k}-1 / k}{\log k}$ converges almost surely.
(b) Using Kronecker's lemma conclude that $\lim _{n \rightarrow \infty} \frac{N_{n}}{\log n}=1$ a.s.
41. Assume that in the branching process $Z_{n}, q=1$ where q is the probability of extinction. Prove that $M_{n}=Z_{n} / \mu^{n}$ is not a uniformly integrable martingale.
42. Let \mathcal{C} be a class of random variables of $(\Omega, \mathcal{F}, \mathbf{P})$. Assume that \mathcal{C} is L^{p} bounded for some $p>1$, that is, $\exists p>1$ and $A \in \mathbb{R}$ such that $\mathbf{E}\left[|X|^{p}\right]<A$ for all $X \in \mathcal{C}$. Show that then \mathcal{C} is UI.
43. Homework 9.A (26th Apr) Let \mathcal{C} be a class of random variables of $(\Omega, \mathcal{F}, \mathbf{P})$. Assume that \mathcal{C} is dominated by an integrable random variable, that is $\exists Y \in L^{1}(\Omega, \mathcal{F}, \mathbf{P})$ such that $|X| \leq Y$ a.s. $\forall X \in \mathcal{C}$. Show that then \mathcal{C} is UI.
44. Let \mathcal{C} be a class of random variables on $(\Omega, \mathcal{F}, \mathbf{P})$. Prove that \mathcal{C} is UI if and only if the following two conditions hold
(a) \mathcal{C} is L^{1}-bounded, that is $\sup \{\mathbf{E}[|X|]: X \in \mathcal{C}\}<\infty$ and
(b) $\forall \varepsilon>0, \exists \delta>0$ s.t.

$$
F \in \mathcal{F} \text { and } \mathbf{P}(F)<\delta \Longrightarrow \mathbf{E}\left[|X| \mathbb{1}_{F}\right]<\varepsilon
$$

45. Let \mathcal{C} and \mathcal{D} be UI classes of random variables. Prove that

$$
\mathcal{C}+\mathcal{D}=\{X+Y: X \in \mathcal{C} \text { and } Y \in \mathcal{D}\}
$$

is also UI. Hint: Use the previous exercise.
46. Homework 9.B (26th Apr) Let \mathcal{C} be a UI family of random variables. Let us define

$$
\mathcal{D}:=\{Y: \exists X \in \mathcal{C}, \exists \mathcal{G} \text { sub- } \sigma \text {-algebra of } \mathcal{F} \text { s.t. } Y=\mathbf{E}[X \mid \mathcal{G}]\} .
$$

Prove that \mathcal{D} is also UI.
47. Homework 9.C (26th Apr) Let X_{1}, X_{2}, \ldots be iid. random variables with $\mathbf{E}\left[X^{+}\right]=\infty$ and $\mathbf{E}\left[X^{-}\right]<\infty$. (Recall $X=X^{+}-X^{-}$and $X^{+}, X^{-} \geq 0$.) Use the SLLN to prove that $S_{n} / n \rightarrow \infty$ a.s. where $S_{n}:=X_{1}+\cdots+X_{n}$. Hint: For $M>0$ let $X_{i}^{M}=X_{i} \wedge M$ and $S_{n}^{M}=X_{n}^{M}+\cdots+X_{n}^{M}$. Explain why $\lim _{n \rightarrow \infty} S_{n}^{M} / n=\mathbf{E}\left[X_{i}^{M}\right]$ and $\liminf _{n \rightarrow \infty} S_{n} / n \geq \lim _{n \rightarrow \infty} S_{n}^{M} / n$.
48. Homework 10.A (3rd May) (Infinite Monkey Theorem) Prove that a monkey typing at random on a typewriter for infine time will type the complete works of Shakespeare eventually.
49. Homework 10.B (3rd May) (Azuma-Hoeffding inequality)
(a) Assume that Y is a random variable which takes values from $[-c, c]$ and $\mathbf{E}[Y]=0$ holds. Prove that for all $\theta \in \mathbb{R}$ we have

$$
\mathbf{E}\left[e^{\theta Y}\right] \leq \cosh (\theta c) \leq \exp \left(\frac{1}{2} \theta^{2} c^{2}\right)
$$

Hint: Let $f(z):=\exp (\theta z), z \in[-c, c]$. Then by the convexity of f we have

$$
f(y) \leq \frac{c-y}{2 c} f(-c)+\frac{c+y}{2 c} f(c) .
$$

(b) Let M be a martingale with $M_{0}=0$ such that for a sequence of positive numbers $\left\{c_{n}\right\}_{n=1}^{\infty}$ we have $\left|M_{n}-M_{n-1}\right| \leq c_{n}$ for all n. Then the following inequality holds for all $x>0$:

$$
\mathbf{P}\left(\sup _{k \leq n} M_{k} \geq x\right) \leq \exp \left(-\frac{1}{2} x^{2} / \sum_{k=1}^{n} c_{k}^{2}\right) .
$$

Hint: Use submartingale inequlaity as in the proof of LIL. Then present M_{n} (in the exponent) like a telescopic sum of its increments. Use the orthogonality of martingale increments. Use the first part of this exercise and find the minimum in θ of the expression in the exponent.
50. Homework 10.C (3rd May) m balls are placed one by one into n urns independently at random with uniform distribution among the urns. Let \mathcal{F}_{k} be the σ-algebra generated by the place of the first k balls and define the martingale $M_{k}=\mathbf{E}\left(N \mid \mathcal{F}_{k}\right)$ where N is the number of empty urns after placing the last ball. Let Y_{k} be the number of empty urns after placing the k th ball. Show that
(a) $M_{k}=Y_{k}\left(\frac{n-1}{n}\right)^{m-k}$;
(b) $\left|M_{k}-M_{k-1}\right| \leq\left(\frac{n-1}{n}\right)^{m-k}$;
(c)

$$
\mathbf{P}(|N-\mu| \geq \varepsilon) \leq 2 \exp \left(-\frac{\varepsilon^{2}(n-1 / 2)}{n^{2}-\mu^{2}}\right)
$$

where $\mu=\mathbf{E} N=n\left(\frac{n-1}{n}\right)^{m}$.
Hint: For part (b) note that the possible values of Y_{k} are Y_{k-1} or $Y_{k-1}-1$. For part (c) use the Azuma-Hoeffding inequality for the martingales $M_{k}-\mu$ and $-M_{k}+\mu$.
51. (Exercise for Markov chain CLT) Consider the following Markov chain $\left\{X_{n}\right\}_{n=0}^{\infty}$. The state space is \mathbb{Z}. The transition probabilities are $p(0,1)=p(0,-1)=\frac{1}{2}$ and for an arbitrary $x \in \mathbb{N}^{+}$we have

$$
p(x, x+1)=p(x, 0)=\frac{1}{2}, \quad p(-x,-x-1)=p(-x, 0)=\frac{1}{2} .
$$

(a) Find the stationary measure π for X_{n}.
(b) Define the operator $P: L^{1}(\mathbb{Z}, \pi) \rightarrow L^{1}(\mathbb{Z}, \pi)$ by $(P g)(i):=\sum_{j \in \mathbb{Z}} p(i, j) g(j)$ and let I be the identity on $L^{1}(\mathbb{Z}, \pi)$, i.e. P acts on g as a multiplication of an infinite matrix and an infinite vector. Further, let $f: \mathbb{Z} \rightarrow \mathbb{R}$ be an arbitrary function satisfying the following conditions:
$\forall x \in \mathbb{Z}, f(x)=-f(-x)$, and $\exists a<\sqrt{2}$ s.t. $f(x)<a^{|x|}$ for all x large enough.
For example polynomials of the form $f(x)=\sum_{i=1}^{n} b_{2 i-1} x^{2 i-1}$.
(c) Construct a function $g \in L^{2}(\pi)$ such that $((I-P) \cdot g)(i)=f(i)$.
(d) From now on we always assume that $f(x)=x^{-3}$. Determine

$$
\sigma^{2}:=\mathbf{E}_{\pi}\left[\left(g\left(X_{1}\right)-\mathbf{E}\left(g\left(X_{1}\right) \mid \mathcal{F}_{0}\right)\right)^{2}\right] .
$$

(e) Prove that $\mathbf{P}\left(-3 \sigma \sqrt{n} \leq f\left(X_{1}\right)+\cdots+f\left(X_{n}\right) \leq 3 \sigma \sqrt{n}\right) \geq 0.99$ for sufficiently large n.

[^0]: *Most of the exercises by courtesy of Károly Simon, some of them by courtesy of Bálint Tóth.

