Markov processes and martingales 2nd resit midterm test

10th Dec 2018

1. (a) (2 points) Define

$$
f(x)= \begin{cases}\frac{1}{2 x^{2}} & \text { if } x \geq 1 \\ 0 & \text { if }-1<x<1 \\ -\frac{1}{x^{3}} & \text { if } x \leq-1\end{cases}
$$

Check that $f(x)$ is the density function of a probability distribution.
(b) (3 points) Let X be a random variable with density $f(x)$. Let it be decomposed as $X=X^{+}-X^{-}$with $X^{+}, X^{-} \geq 0$. Show that $\mathbf{E}\left(X^{+}\right)=\infty$ and $\mathbf{E}\left(X^{-}\right)<\infty$.
(c) (4 points) Let X_{1}, X_{2}, \ldots be an iid. sequence of random variables with density $f(x)$ and define $S_{n}=X_{1}+\cdots+X_{n}$. Use the SLLN to prove that $S_{n} / n \rightarrow \infty$ a.s. in the following steps. For any $M>0$, define $X_{k}^{M}=\min \left(X_{k}, M\right)$ and $S_{n}^{M}=X_{1}^{M}+\cdots+X_{n}^{M}$. Explain why $S_{n}^{M} / n \rightarrow \mathbf{E}\left(X_{1}^{M}\right)$ and $\liminf _{n \rightarrow \infty} S_{n} / n \geq \lim _{n \rightarrow \infty} S_{n}^{M} / n$.
2. (a) (4 points) Let Y_{1}, Y_{2}, \ldots be iid. L^{1} random variables. Let $S_{n}:=Y_{1}+\cdots+Y_{n}$ and we write $\mu=\mathbf{E}\left(Y_{1}\right)$. Let T be a stopping time satisfying $\mathbf{E}(T)<\infty$. Prove that

$$
\mathbf{E}\left[S_{T}\right]=\mu \cdot \mathbf{E}[T] .
$$

Hint: Decompose the probability space into the the disjoint union of the events $\{T=k\}$ for $k=1,2, \ldots$ and use dominated convergence to verify the exchange of the expectation with the infinite summation.
(b) (4 points) Let X_{1}, X_{2}, \ldots be an iid. sequence of random variables with distribution $\mathbf{P}\left(X_{1}=1\right)=\mathbf{P}\left(X_{1}=-1\right)=1 / 2$ and define the simple random walk $Z_{n}=X_{1}+$ $\cdots+X_{n}$. Let $U=\min \left\{n>0: Z_{n}=1\right\}$ be the first hitting time of 1 . Use the first part of this exercise to conclude that $\mathbf{E}(U)$ cannot be finite.

