Markov processes and martingales 2nd midterm test

5th Dec 2018

1. Let $(Z_n)_{n=0}^{\infty}$ be a branching process defined recursively by the iid. random variables $\{X_k^{(n)}\}_{k,n=1}^{\infty}$ with distribution $\mathbf{P}(X_1^{(1)}=0) = 1/4$ and $\mathbf{P}(X_1^{(1)}=2) = 3/4$. Let

$$Z_0 := 1, \quad Z_{n+1} := X_1^{(n+1)} + \dots + X_{Z_n}^{(n+1)}, \quad n \ge 0.$$

(a) (3 points) Compute the generating function of the offspring distribution given by

$$f(s) = \mathbf{E}\left(s^{X_1^{(1)}}\right) = \sum_{m=0}^{\infty} \mathbf{P}\left(X_1^{(1)} = m\right) s^m.$$

Further, let

$$\{\text{extinction}\} = \{Z_n \to 0\} = \{\exists n, \ Z_n = 0\}, \quad \{\text{explosion}\} = \{Z_n \to \infty\}.$$

Recall that $q = \mathbf{P}$ (extinction) is the smaller (if there are two) fixed point of f(s). Find the value of q.

- (b) (3 points) Let $\mathcal{F}_n = \sigma(Z_0, Z_1, \dots, Z_n)$. Show that $\mathbf{E}\left[s^{Z_{n+1}}|\mathcal{F}_n\right] = f(s)^{Z_n}$ for every $s \ge 0$. Explain that q^{Z_n} is a martingale and $\lim_{n \to \infty} Z_n = Z_\infty$ exists a.s.
- (c) (3 points) Let $T = \min\{n : Z_n = 0\}$ be the extinction time with $T = \infty$ if $Z_n > 0$ always. Prove by dominated convergence that $q = \mathbf{E}[q^{Z_T}]$.
- 2. Let $(\Omega, \mathcal{F}, \mathbf{P})$ be the probability space where $\Omega = [0, 1]$, \mathcal{F} is the Borel σ -algebra and \mathbf{P} is the Lebesgue measure. Then the random variable $U(\omega) = \omega$ has uniform distribution on [0, 1]. Define the sequence of random variables

$$X_n = \frac{1}{U^{\alpha}} \mathbb{1}_{\{U \in [1/n,1]\}}$$

where $\alpha > 0$ is a parameter.

- (a) (2 points) Show that for $\alpha \in (0, 1)$, the random variables X_n are uniformly integrable. *Hint:* One can show that they are dominated by an L^1 random variable.
- (b) (2 points) Prove that for $\alpha \ge 1$, the random variables X_n are not uniformly integrable by computing $\mathbf{E}(X_n)$ and by showing that it diverges to infinity as $n \to \infty$.
- (c) (2 points) What is the almost sure limit X of X_n for any $\alpha > 0$?
- (d) (2 points) For which values of α does the sequence X_n converge also in L^1 to the almost sure limit X?