Markov processes and martingales 2nd midterm test

5th Dec 2018

1. Let $\left(Z_{n}\right)_{n=0}^{\infty}$ be a branching process defined recursively by the iid. random variables $\left\{X_{k}^{(n)}\right\}_{k, n=1}^{\infty}$ with distribution $\mathbf{P}\left(X_{1}^{(1)}=0\right)=1 / 4$ and $\mathbf{P}\left(X_{1}^{(1)}=2\right)=3 / 4$. Let

$$
Z_{0}:=1, \quad Z_{n+1}:=X_{1}^{(n+1)}+\cdots+X_{Z_{n}}^{(n+1)}, \quad n \geq 0
$$

(a) (3 points) Compute the generating function of the offspring distribution given by

$$
f(s)=\mathbf{E}\left(s^{X_{1}^{(1)}}\right)=\sum_{m=0}^{\infty} \mathbf{P}\left(X_{1}^{(1)}=m\right) s^{m} .
$$

Further, let

$$
\{\text { extinction }\}=\left\{Z_{n} \rightarrow 0\right\}=\left\{\exists n, Z_{n}=0\right\}, \quad\{\operatorname{explosion}\}=\left\{Z_{n} \rightarrow \infty\right\}
$$

Recall that $q=\mathbf{P}$ (extinction) is the smaller (if there are two) fixed point of $f(s)$. Find the value of q.
(b) (3 points) Let $\mathcal{F}_{n}=\sigma\left(Z_{0}, Z_{1}, \ldots Z_{n}\right)$. Show that $\mathbf{E}\left[s^{Z_{n+1}} \mid \mathcal{F}_{n}\right]=f(s)^{Z_{n}}$ for every $s \geq 0$. Explain that $q^{Z_{n}}$ is a martingale and $\lim _{n \rightarrow \infty} Z_{n}=Z_{\infty}$ exists a.s.
(c) (3 points) Let $T=\min \left\{n: Z_{n}=0\right\}$ be the extinction time with $T=\infty$ if $Z_{n}>0$ always. Prove by dominated convergence that $q=\mathbf{E}\left[q^{Z_{T}}\right]$.
2. Let $(\Omega, \mathcal{F}, \mathbf{P})$ be the probability space where $\Omega=[0,1], \mathcal{F}$ is the Borel σ-algebra and \mathbf{P} is the Lebesgue measure. Then the random variable $U(\omega)=\omega$ has uniform distribution on $[0,1]$. Define the sequence of random variables

$$
X_{n}=\frac{1}{U^{\alpha}} \mathbb{1}_{\{U \in[1 / n, 1]\}}
$$

where $\alpha>0$ is a parameter.
(a) (2 points) Show that for $\alpha \in(0,1)$, the random variables X_{n} are uniformly integrable. Hint: One can show that they are dominated by an L^{1} random variable.
(b) (2 points) Prove that for $\alpha \geq 1$, the random variables X_{n} are not uniformly integrable by computing $\mathbf{E}\left(X_{n}\right)$ and by showing that it diverges to infinity as $n \rightarrow \infty$.
(c) (2 points) What is the almost sure limit X of X_{n} for any $\alpha>0$?
(d) (2 points) For which values of α does the sequence X_{n} converge also in L^{1} to the almost sure limit X ?

