Exercises in Markov processes and martingales^{*}

2018/19 fall semester

Conditional expectation

- 1. Homework 1.A. (19th Sep) We roll two dices. X is the result of one of them and Z the sum of the results. Find $\mathbf{E}[Z|X]$ and $\mathbf{E}[X|Z]$.
- 2. Let $(\Omega, \mathcal{F}, \mathbf{P})$ be the probability space where $\Omega = [0, 1]$, \mathcal{F} is the Borel σ -algebra and \mathbf{P} is the Lebesgue measure on it. Define the random variables $X(\omega) = 3\omega^2$ and $Y(\omega) = \mathbb{1}(\omega \in [1/2, 1]) \mathbb{1}(\omega \in [0, 1/2))$ for any $\omega \in \Omega$. What is $\mathbf{E}(X|Y)$?
- 3. Homework 1.B. (19th Sep) Let $\Omega = \{-1, 0, +1\}$, $\mathcal{F} = 2^{\Omega}$ and $\mu(\{-1\}) = \mu(\{0\}) = \mu(\{+1\}) = 1/3$. Consider also the sub- σ -algebras

$$\mathcal{G} = \{\emptyset, \{-1\}, \{0, +1\}, \Omega\}, \quad \mathcal{H} = \{\emptyset, \{-1, 0\}, \{+1\}, \Omega\}$$

Let $X : \Omega \to \mathbb{R}$ be the random variable $X(\omega) = \omega$. Compute $\mathbf{E}(\mathbf{E}(X|\mathcal{G})|\mathcal{H})$ and $\mathbf{E}(\mathbf{E}(X|\mathcal{H})|\mathcal{G})$.

- 4. Let X_j , j = 1, 2, ... be iid. random variables with common distribution $\mathbf{P}(X_j = -1) = \mathbf{P}(X_j = +1) = 1/2$ and let $S_n = X_1 + \cdots + X_n$. Compute the conditional expectations $\mathbf{E}(X_1|\sigma(S_n)), \mathbf{E}(S_n|\sigma(X_1))$ and $\mathbf{E}(S_{n+m}^2|\sigma(S_n))$.
- 5. Homework 1.C. (19th Sep) Suppose that the random variables X, Y, Z are jointly defined on a probability space. Prove that
 - (a) $\mathbf{E}(X) = \mathbf{E}(\mathbf{E}(X|Y)),$
 - (b) $\mathbf{E}(Y|Z) = \mathbf{E}(\mathbf{E}(Y|X,Z)|Z).$
- 6. Homework 1.D. (19th Sep) Prove the following general version of Bayes's formula. Given the probability space $(\Omega, \mathcal{F}, \mathbf{P})$ and let \mathcal{G} be a sub- σ -algebra of \mathcal{F} . Let $G \in \mathcal{G}$ and $A \in \mathcal{F}$ with $\mathbf{P}(A) > 0$. Show that

$$\mathbf{P}(G|A) = \frac{\int_{G} \mathbf{P}(A|\mathcal{G}) \, \mathrm{d}\mathbf{P}}{\int_{\Omega} \mathbf{P}(A|\mathcal{G}) \, \mathrm{d}\mathbf{P}}.$$

7. Prove the conditional variance formula

$$\operatorname{Var}(X) = \mathbf{E}\left[\operatorname{Var}(X|Y)\right] + \operatorname{Var}\left(\mathbf{E}\left[X|Y\right]\right)$$

where $\operatorname{Var}(X|Y) = \mathbf{E} [X^2|Y] - (\mathbf{E} [X|Y])^2$.

^{*}Most of the exercises by courtesy of Károly Simon, some of them by courtesy of Bálint Tóth.

8. Let X_1, X_2, \ldots be iid. random variables and N be a non-negative integer valued random variable which is independent of $X_i, i \ge 1$. Prove that

$$\operatorname{Var}\left(\sum_{i=1}^{N} X_{i}\right) = \mathbf{E}\left[N\right]\operatorname{Var}(X) + (\mathbf{E}\left[X\right])^{2}\operatorname{Var}(N).$$

- 9. Let X be a random variable. Assume that Y is another random variable for which $\mathbb{P}(Y = 0 \text{ or } Y = 1) = 1$. Prove that $Y \in \sigma(X)$ iff there exists a $\varphi : \mathbb{R} \to \mathbb{R}$ Borel measurable function such that $Y = \varphi(X)$.
- 10. Assume that X, Y are jointly continuous random variables with joint density f(x, y). Prove that

$$\mathbf{E}[Y|X] = \mathbf{E}[Y|\sigma(X)] = \frac{\int yf(X,y) \, \mathrm{d}y}{\int \mathbb{R} f(X,y) \, \mathrm{d}y}.$$

11. Homework 1.E. (19th Sep) Let $Y \in \sigma(\mathcal{G})$. Prove that

$$\mathbf{E}\left[X|\mathcal{G}\right] \ge Y \Longleftrightarrow \forall A \in \mathcal{G} \ \mathbf{E}\left[X \cdot \mathbb{1}_A\right] \ge \mathbf{E}\left[Y \cdot \mathbb{1}_A\right].$$

12. Let X and Y be random variables on the same probability space. Prove that X and Y are independent iff for every $\varphi : \mathbb{R} \to \mathbb{R}$ bounded measurable functions we have

$$\mathbf{E}\left[\varphi(Y)|X\right] = \mathbf{E}\left[\varphi(Y)\right].$$

13. Homework 1.F. (19th Sep) Let $X, Y \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ satisfying

 $\mathbf{E}[X|Y] = Y$ and $\mathbf{E}[Y|X] = X$.

Show that $\mathbf{P}(X = Y) = 1$.

Hint: If $X \neq Y$, then there is a $c \in \mathbb{Q}$ such that either $X \leq c$ and Y > c or X > c and $Y \leq c$.

Martingales

- 14. Homework 2.A. (27th Sep) Let X_t be a Poisson(1), that is, a Poisson process with rate $\lambda = 1$. (See Durrett's book p. 139 for the definition.) Find $\mathbf{E}[X_1|X_2]$ and $\mathbf{E}[X_2|X_1]$.
- 15. Homework 2.B. (27th Sep) Let $S_n := X_1 + \cdots + X_n$ where X_1, X_2, \ldots are iid. with $X_1 \sim \text{Exp}(1)$. Verify that

$$M_n := \frac{n!}{(1+S_n)^{n+1}} \cdot e^{S_n}$$

is a martingale with respect to the natural filtration \mathcal{F}_n .

- 16. Homework 2.C. (27th Sep) For every i = 1, ..., m let $\left\{M_n^{(i)}\right\}_{n=1}^{\infty}$ be a sequence of martingales with respect to $\{X_n\}_{n=1}^{\infty}$. Show that $M_n := \max_{1 \le i \le n} M_n^{(i)}$ is a submartingal with respect to $\{X_n\}$.
- 17. Homework 3.A. (3rd Oct) There are n white and n black balls in an urn. We pull out all of them one-by-one without replacement. Whenever we pull

- a black ball we have to pay 1\$,
- a white ball we receive 1\$.

Let $X_0 := 0$ and X_i be the amount we gained or lost after the *i*th ball was pulled. We define

$$Y_i := \frac{X_i}{2n-i} \text{ for } 1 \le i \le 2n-1, \text{ and } Z_i := \frac{X_i^2 - (2n-i)}{(2n-i)(2n-i-1)} \text{ for } 1 \le i \le 2n-2.$$

- (a) Prove that $Y = (Y_i)$ and $Z = (Z_i)$ are martingales.
- (b) Find $Var(X_i)$.
- 18. Homework 3.B. (3rd Oct) Let X, Y be two independent $\text{Exp}(\lambda)$ random variables and Z := X + Y. Show that for any non-negative measurable h we have $\mathbb{E}[h(X)|Z] = \frac{1}{Z} \int_{-\infty}^{Z} h(t) dt$.
- 19. Homework 3.C. (3rd Oct) Construct a martingale which is NOT a Markov chain.
- 20. Homework 4.A. (10th Oct) Let ξ_1, ξ_2, \ldots be a sequence of iid. random variables with $\mathbf{P}(\xi_1 = 1) = \mathbf{P}(\xi_1 = -1) = 1/2$ and define the simple symmetric random walk $S_n = \xi_1 + \cdots + \xi_n$. For the integers k and l, define the hitting times $T_{-k} = \inf\{n : S_n = -k\}$ and $T_l = \inf\{n : S_n = l\}$ and the stopping time given by their minimum $T = \min(T_{-k}, T_l)$.
 - (a) Find $\mathbf{E}(S_T)$ by using the optional stopping theorem for the martingale S_n .
 - (b) What is $\mathbf{P}(T_{-k} < T_l)$? *Hint:* Note that the random variable S_T can only take two values.
 - (c) We have shown previously that $M_n = S_n^2 n$ is a martingale. Apply the optional stopping theorem for M_n and T and compute $\mathbf{E}(T)$.
- 21. Homework 4.B. (10th Oct) In the casino, a player's winnings per unit stake on game n are ξ_n where $\{\xi\}_{n=1}^{\infty}$ are iid. random variables with $\mathbf{P}(\xi_n = +1) = p$ and $\mathbf{P}(\xi_n = -1) = q$ with p + q = 1 and p > 1/2. In other words with probability q < 1/2 the player loses the stake and with probability p she gets back twice of the stake. Let C_n be the player's stake on game n. We assume that C_n is previsible, that is $C_{n+1} \in \mathcal{F}_n := \sigma(\xi_1, \ldots, \xi_n)$ for all n. Let Y_n denote the wealth of the player after the nth round. We assume that $0 \le C_n \le Y_{n-1}$. We call $\alpha = p \log p + q \log q + \log 2$ the entropy.
 - (a) Define the function

$$f(x) = p\ln(1+x) + q\ln(1-x)$$

for $x \in [0, 1]$. Show that f is strictly concave. Find $\max_{x \in [0, 1]} f(x)$.

- (b) Prove that for any previsible betting strategy C_n , the process $Z_n = \log Y_n n\alpha$ is a supermartingale. Show that this implies $\mathbf{E}(\log Y_n \log Y_0) \leq n\alpha$. Hint: Introduce $x_n = C_n/Y_{n-1}$ so that $Y_{n+1} = Y_n \cdot (1 + x_{n+1}\xi_{n+1})$. The function f (defined above) appears when calculating $\mathbf{E}(\log(Y_{n+1}) | \mathcal{F}_n)$.
- (c) Show that there is a betting strategy for which Z_n is a martingale and that $\mathbf{E}(\log Y_n \log Y_0) = n\alpha$ is achieved. (This is sometimes called the *log-optimal portfolio* in economics.)
- 22. Homework 4.C. (10th Oct) Let ξ_1, ξ_2, \ldots be independent standard normal variables. Recall that their moment generating function is $M(\theta) = \mathbf{E} \left[e^{\theta \xi_i} \right] = e^{\theta^2/2}$. Let $a, b \in \mathbb{R}$ and define $S_n = \sum_{k=1}^n \xi_k$ and $X_n = e^{aS_n - bn}$. Prove that

- (a) $X_n \to 0$ a.s. iff b > 0.
- (b) $X_n \to 0$ in L^r iff $r < \frac{2b}{a^2}$.
- 23. Homework 5.A. (17th Oct) Extension of part (iii) of Doob's optional stopping theorem. Let X be a supermartingale. Let T be a stopping time with $\mathbf{E}[T] < \infty$ as in part (iii) of Doob's optional stopping theorem. Assume that there is a C such that

$$\mathbf{E}\left[|X_k - X_{k-1}||\mathcal{F}_{k-1}\right] \le C$$

holds almost surely for all k > 0. Prove that $\mathbf{E}[X_T] \leq \mathbf{E}[X_0]$.

24. Let \mathbf{X}, \mathbf{Z} be \mathbb{R}^d -valued random variables defined on the $(\Omega, \mathcal{F}, \mathbb{P})$. Assume that

$$\mathbf{E}\left[e^{i\mathbf{t}\cdot\mathbf{X}+i\mathbf{s}\cdot\mathbf{Z}}\right] = \mathbf{E}\left[e^{i\mathbf{t}\mathbf{X}}\right] \cdot \mathbf{E}\left[e^{i\mathbf{s}\mathbf{Z}}\right]$$

for all $\mathbf{s}, \mathbf{t} \in \mathbb{R}^n$. Prove that \mathbf{X}, \mathbf{Z} are independent.

Normal distribution

- 25. Let $\mathbf{Y} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$ in \mathbb{R}^2 , $\mathbf{Y} = (Y_1, Y_2)$ and let $a_1, a_2 \in \mathbb{R}$. Find the distribution of $a_1Y_1 + a_2Y_2$.
- 26. Homework 5.B. (17th Oct) Let $\mathbf{Y} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$ and let *B* be a non-singular matrix. Find the distribution of $\mathbf{X} = B \cdot \mathbf{Y}$.
- 27. Homework 5.C. (17th Oct) Let $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$ in \mathbb{R}^n . Let $\mathbf{X}_1 := (X_1, \ldots, X_p)$ and $\mathbf{X}_2 := (X_{p+1}, \ldots, X_n)$. Let Σ , Σ_1 and Σ_2 the covariance matrices of X, X_1 and X_2 respectively. Prove that \mathbf{X}_1 and \mathbf{X}_2 are independent if and only if

$$\Sigma = \left(\begin{array}{cc} \Sigma_1 & 0\\ 0 & \Sigma_2 \end{array}\right).$$

- 28. Homework 5.D. (17th Oct) Construct a random vector (X, Y) such that both X and Y are one-dimensional normal distributions but (X, Y) is NOT a bivariate normal distribution.
- 29. Homework 5.E. (17th Oct) Let $\mathbf{X} = (X_1, \ldots, X_d)$ be standard multivariate normal distribution. Let Σ be an $n \times n$ positive semi-definite, symmetric matrix and let $\boldsymbol{\mu} \in \mathbb{R}^d$. Prove that there exists an affine transformation $T : \mathbb{R}^d \to \mathbb{R}^d$, such that $T(\mathbf{X}) \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$.
- 30. Homework 5.F. (17th Oct) Let X be the height of the father and let Y be the height of the son in sample of father-son pairs. Assume that (X, Y) is bivariate normal. Assume that in inches

$$\mathbf{E}[X] = 68, \ \mathbf{E}[Y] = 69, \ \sigma_X = \sigma_Y = 2, \ \rho = 0.5$$

where ρ is the correlation of (X, Y). Find the conditional distribution of Y given X = 80 (6 feet 8 inches).

Martingales

31. Homework 6.A. (24th Oct) Let X_n be a discrete time birth-death process with transition probabilities

 $p(i, i+1) = p_i, \quad p(i, i-1) = 1 - p_i = q_i$

for $i \ge 1$ which are all assumed to be strictly positive. We define the function

$$g: \mathbb{N} \to \mathbb{R}^+, \quad g(0) = 0, \quad g(k) = 1 + \sum_{j=1}^{k-1} \prod_{i=1}^j \frac{q_i}{p_i}.$$

- (a) Prove that $Z_n := g(X_n)$ is a martingale for the natural filtration.
- (b) Let 0 < i < n be fixed. Find the probability that a process started from *i* gets to *n* earlier than to 0.
- 32. Homework 6.B. (24th Oct) Let a_n be a deterministic sequence of real numbers and let $\{\varepsilon_n\}$ be an iid. sequence of random variables satisfying $\mathbb{P}(\varepsilon_n = \pm 1) = \frac{1}{2}$. Show that $\sum_{n=1}^{\infty} \varepsilon_n a_n$ converges almost surely if and only if $\sum_{n=1}^{\infty} a_n^2 < \infty$.
- 33. Homework 6.C. (24th Oct) Let X_1, X_2, \ldots be an independent sequence of random variables with $X_1 = 0$ and for $n \ge 2$ with $\mathbf{P}(X_n = -n^2) = \frac{1}{n^2}$ and $\mathbf{P}\left(X_n = \frac{n^2}{n^2-1}\right) = 1 \frac{1}{n^2}$. Let $S_n := X_1 + \cdots + X_n$. Show that
 - (a) $\{S_n\}$ is a martingale with zero expectation which converges to ∞ a.s.
 - (b) $\lim_{n \to \infty} S_n/n = 1.$

Hint: The Borel–Cantelli lemma can be useful which says that if the events A_1, A_2, \ldots satisfy $\sum_k \mathbf{P}(A_k) < \infty$, then with probability one, only finitely many of them happen.

- 34. Homework 7.A. (31st Oct) Let $X = (X_n)$ be an L^2 random walk that is a martingale, i.e. let Z_k be iid. random variables with 0 mean and finite variance σ^2 and let $X_n = Z_1 + \cdots + Z_n$. Prove that the angle bracket process of X is $A_n = n\sigma^2$.
- 35. Homework 7.B. (31st Oct) Let X_n be an L^2 martingale with angle bracket process A_n . Let C_n be previsible and also L^2 . Prove that the angle bracket process of the martingale transform $Y = C \bullet X$ is given by $C^2 \bullet A$.
- 36. Homework 7.C. (31st Oct) Let $M = (M_n)$ be a martingale with $M_0 = 0$ and $|M_k M_{k-1}| < C$ for a $C \in \mathbb{R}$. Let T be a stopping time which is finite a.s. and define

$$U_n = \sum_{k=1}^n (M_k - M_{k-1})^2 \mathbb{1}_{T \ge k}, \quad V_n = 2 \sum_{1 \le i < j \le n} (M_i - M_{i-1}) (M_j - M_{j-1}) \mathbb{1}_{T \ge j},$$
$$U_\infty = \sum_{k=1}^\infty (M_k - M_{k-1})^2 \mathbb{1}_{T \ge k}, \quad V_\infty = 2 \sum_{1 \le i < j} (M_i - M_{i-1}) (M_j - M_{j-1}) \mathbb{1}_{T \ge j}.$$

- (a) Prove that $M_{T \wedge n}^2 = U_n + V_n$ and $M_T^2 = U_\infty + V_\infty$.
- (b) Assume further that $\mathbf{E}[T^2] < \infty$. Show that $\lim_{n \to \infty} U_n = U_\infty$ a.s. and $\mathbf{E}[U_\infty] < \infty$ and $\mathbf{E}[V_n] = \mathbf{E}[V_\infty] = 0$.
- (c) Conclude that if $\mathbf{E}[T^2] < \infty$, then $\lim_{n \to \infty} \mathbf{E}[M^2_{T \wedge n}] = \mathbf{E}[M^2_T]$.

- 37. Homework 7.D. (31st Oct) Wald equalities. Let Y_1, Y_2, \ldots be iid. L^1 random variables. Let $S_n := Y_1 + \cdots + Y_n$ and we write $\mu = \mathbf{E}[Y_i]$. Let T be a stopping time satisfying $\mathbf{E}[T] < \infty$.
 - (a) Prove that

$$\mathbf{E}\left[S_{T}\right] = \mu \cdot \mathbf{E}\left[T\right].$$

(b) Assume further that Y_i are bounded $(\exists C_i \in \mathbb{R} \text{ with } |Y_i| < C_i)$ and $\mathbf{E}[T^2] < \infty$. We write $\sigma^2 = \operatorname{Var}(Y_i)$. Then

$$\mathbf{E}\left[(S_T - \mu T)^2\right] = \sigma^2 \cdot \mathbf{E}\left[T\right].$$

Hint: Introduce an appropriate martingale and apply the result of the previous exercise.

38. Homework 8.A. (7th Nov) A branching process $Z = (Z_n)_{n=0}^{\infty}$ is defined recursively by a given family of non-negative integer valued iid. random variables $\left\{X_k^{(n)}\right\}_{k,n=1}^{\infty}$ as follows:

$$Z_0 := 1, \quad Z_{n+1} := X_1^{(n+1)} + \dots + X_{Z_n}^{(n+1)}, \quad n \ge 0.$$

Let $\mu = \mathbf{E} \left[X_k^{(n)} \right]$ and $\mathcal{F}_n = \sigma(Z_0, Z_1, \dots, Z_n)$. We write f(s) for the generating function of the offspring distribution, that is

$$f(s) = \mathbf{E}\left(s^{X_k^{(n)}}\right) = \sum_{m=0}^{\infty} \mathbf{P}\left(X_k^{(n)} = m\right) s^m$$

for any k and n. Further, let

 $\{\text{extinction}\} = \{Z_n \to 0\} = \{\exists n, Z_n = 0\}, \quad \{\text{explosion}\} = \{Z_n \to \infty\}$

and denote $q = \mathbf{P}$ (extinction). Recall that q is the smaller (if there are two) fixed point of f(s), that is q is the smallest solution of f(q) = q.

- (a) Prove by induction that $\mathbf{E}[Z_n] = \mu^n$.
- (b) Show that $\mathbf{E}\left[s^{Z_{n+1}}|\mathcal{F}_n\right] = f(s)^{Z_n}$ for every $s \ge 0$. Explain that q^{Z_n} is a martingale and $\lim_{n \to \infty} Z_n = Z_\infty$ exists a.s.
- (c) Let $T = \min\{n : Z_n = 0\}$ be the extinction time with $T = \infty$ if $Z_n > 0$ always. Prove by dominated convergence that $q = \mathbf{E}\left[q^{Z_T}\right] = \mathbf{E}\left[q^{Z_\infty} \cdot \mathbb{1}_{T=\infty}\right] + \mathbf{E}\left[q^{Z_T} \cdot \mathbb{1}_{T<\infty}\right].$
- (d) Prove that $\mathbf{E}\left[q^{Z_{\infty}} \cdot \mathbb{1}_{T=\infty}\right] = 0.$
- (e) Conclude that if $T(\omega) = \infty$ then $Z_{\infty} = \infty$, hence

$$\mathbf{P}(\text{extinction}) + \mathbf{P}(\text{explosion}) = 1.$$

39. Homework 8.B. (7th Nov) Assume that for the offspring distribution of the branching process Z_n , we have

$$\mu = \mathbf{E}\left[X_k^{(n)}\right] < \infty \text{ and } 0 < \sigma^2 = \operatorname{Var}(X_k^{(n)}) < \infty.$$

Prove that

(a) $M_n = Z_n/\mu^n$ is a martingale for the natural filtration \mathcal{F}_n .

- (b) Show that $\mathbf{E}\left[Z_{n+1}^2|\mathcal{F}_n\right] = \mu^2 Z_n^2 + \sigma^2 Z_n$ and conclude that the martingale M_n is bounded in L^2 if and only if $\mu > 1$.
- (c) Assume that $\mu > 1$ which implies that $M_{\infty} = \lim_{n \to \infty} M_n$ exists in L^2 and a.s. Prove that

$$\operatorname{Var}(M_{\infty}) = \frac{\sigma^2}{\mu(\mu - 1)}.$$

- 40. Homework 8.C. (7th Nov) Let X_1, X_2, \ldots be iid. random variables with a continuous distribution function. Let E_i be the event that a record occurs at time n. That is $E_1 = \Omega$ and $E_n = \{X_n > X_m, \forall m < n\}$. Prove that $\{E_i\}_{i=1}^{\infty}$ are independent and $\mathbf{P}(E_i) = \frac{1}{i}$. Hint: To show the independence one can argue that for any $i_1 < \cdots < i_n < i_{n+1}$, $\mathbf{P}(E_{i_1} \ldots E_{i_n} | E_{i_{n+1}}) = \mathbf{P}(E_{i_1} \ldots E_{i_n})$ holds.
- 41. Homework 8.D. (7th Nov) Let E_1, E_2, \ldots be independent with $\mathbf{P}(E_i) = 1/i$. Let $Y_i := \mathbb{1}_{E_i}$ and $N_n := Y_1 + \cdots + Y_n$. In the special case of the previous homework, N_n is the number of records until time n.
 - (a) Prove that $\sum_{k=2}^{\infty} \frac{Y_k 1/k}{\log k}$ converges almost surely.

(b) Using Kronecker's lemma conclude that $\lim_{n\to\infty} \frac{N_n}{\log n} = 1$ a.s.

- 42. Homework 9.A. (15th Nov) Assume that in the branching process Z_n , q = 1 where q is the probability of extinction. Prove that $M_n = Z_n/\mu^n$ is not a uniformly integrable martingale.
- 43. Homework 9.B. (15th Nov) Let \mathcal{C} be a class of random variables of $(\Omega, \mathcal{F}, \mathbf{P})$. Assume that \mathcal{C} is L^p bounded for some p > 1, that is, $\exists p > 1$ and $A \in \mathbb{R}$ such that $\mathbf{E}[|X|^p] < A$ for all $X \in \mathcal{C}$. Show that then \mathcal{C} is UI.
- 44. Let \mathcal{C} be a class of random variables of $(\Omega, \mathcal{F}, \mathbf{P})$. Assume that \mathcal{C} is dominated by an integrable random variable, that is $\exists Y \in L^1(\Omega, \mathcal{F}, \mathbf{P})$ such that $|X| \leq Y$ a.s. $\forall X \in \mathcal{C}$. Show that then \mathcal{C} is UI.
- 45. Homework 9.C. (15th Nov) Let C be a class of random variables on $(\Omega, \mathcal{F}, \mathbf{P})$. Prove that C is UI if and only if the following two conditions hold
 - (a) \mathcal{C} is L^1 -bounded, that is sup $\{\mathbf{E}[|X|]: X \in \mathcal{C}\} < \infty$ and
 - (b) $\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t.}$

$$F \in \mathcal{F}$$
 and $\mathbf{P}(F) < \delta \Longrightarrow \mathbf{E}[|X|\mathbb{1}_F] < \varepsilon$.

46. Let \mathcal{C} and \mathcal{D} be UI classes of random variables. Prove that

$$\mathcal{C} + \mathcal{D} = \{ X + Y : X \in \mathcal{C} \text{ and } Y \in \mathcal{D} \}$$

is also UI. *Hint*: Use the previous exercise.

47. Let \mathcal{C} be a UI family of random variables. Let us define

 $\mathcal{D} := \{Y : \exists X \in \mathcal{C}, \exists \mathcal{G} \text{ sub-}\sigma\text{-algebra of } \mathcal{F} \text{ s.t. } Y = \mathbf{E}[X|\mathcal{G}]\}.$

Prove that \mathcal{D} is also UI.

- 48. Homework 9.D. (15th Nov) Let X_1, X_2, \ldots be iid. random variables with $\mathbf{E}[X^+] = \infty$ and $\mathbf{E}[X^-] < \infty$. (Recall $X = X^+ - X^-$ and $X^+, X^- \ge 0$.) Use the SLLN to prove that $S_n/n \to \infty$ a.s. where $S_n := X_1 + \cdots + X_n$. Hint: For M > 0 let $X_i^M = X_i \land M$ and $S_n^M = X_n^M + \cdots + X_n^M$. Explain why $\lim_{n \to \infty} S_n^M/n = \mathbf{E}[X_i^M]$ and $\liminf_{n \to \infty} S_n/n \ge \lim_{n \to \infty} S_n^M/n$.
- 49. Homework 10.A. (28th Nov) (Infinite Monkey Theorem) Prove that a monkey typing at random on a typewriter for infine time will type the complete works of Shakespeare eventually.
- 50. Homework 10.B. (28th Nov) (Azuma–Hoeffding inequality)
 - (a) Assume that Y is a random variable which takes values from [-c, c] and $\mathbf{E}[Y] = 0$ holds. Prove that for all $\theta \in \mathbb{R}$ we have

$$\mathbf{E}\left[e^{\theta Y}\right] \le \cosh(\theta c) \le \exp\left(\frac{1}{2}\theta^2 c^2\right).$$

Hint: Let $f(z) := \exp(\theta z), z \in [-c, c]$. Then by the convexity of f we have

$$f(y) \le \frac{c-y}{2c}f(-c) + \frac{c+y}{2c}f(c)$$

(b) Let M be a martingale with $M_0 = 0$ such that for a sequence of positive numbers $\{c_n\}_{n=1}^{\infty}$ we have $|M_n - M_{n-1}| \le c_n$ for all n. Then the following inequality holds for all x > 0:

$$\mathbf{P}\left(\sup_{k\leq n} M_k \geq x\right) \leq \exp\left(-\frac{1}{2}x^2 / \sum_{k=1}^n c_k^2\right).$$

Hint: Use submartingale inequility as in the proof of LIL. Then present M_n (in the exponent) like a telescopic sum, then use the orthogonality of martingale increments. Use the first part of this exercise and find the minimum in θ of the expression in the exponent.

- 51. Homework 10.C. (28th Nov) m balls are placed one by one into n urns independently at random with uniform distribution among the urns. Let \mathcal{F}_k be the σ -algebra generated by the place of the first k balls and define the martingale $M_k = \mathbf{E}(N|\mathcal{F}_k)$ where N is the number of empty urns after placing the last ball. Let Y_k be the number of empty urns after placing the kth ball. Show that
 - (a) $M_k = Y_k \left(\frac{n-1}{n}\right)^{m-k};$ (b) $|M_k - M_{k-1}| \le \left(\frac{n-1}{n}\right)^{m-k};$

$$\mathbf{P}(|N-\mu| \ge \varepsilon) \le 2 \exp\left(-\frac{\varepsilon^2(n-1/2)}{n^2-\mu^2}\right)$$

where $\mu = \mathbf{E}N = n\left(\frac{n-1}{n}\right)^m$. *Hint:* Use the Azuma–Hoeffding inequality for the martingales $M_k - \mu$ and $-M_k + \mu$.

52. (Exercise for Markov chain CLT) Consider the following Markov chain $\{X_n\}_{n=0}^{\infty}$. The state space is \mathbb{Z} . The transition probabilities are $p(0,1) = p(0,-1) = \frac{1}{2}$ and for an arbitrary $x \in \mathbb{N}^+$ we have

$$p(x, x + 1) = p(x, 0) = \frac{1}{2}, \qquad p(-x, -x - 1) = p(-x, 0) = \frac{1}{2}.$$

- (a) Find the stationary measure π for X_n .
- (b) Define the operator $P: L^1(\mathbb{Z}, \pi) \to L^1(\mathbb{Z}, \pi)$ by $(Pg)(i) := \sum_{j \in \mathbb{Z}} p(i, j)g(j)$ and let I be the identity on $L^1(\mathbb{Z}, \pi)$, i.e. P acts on g as a multiplication of an infinite matrix and an infinite vector. Further, let $f: \mathbb{Z} \to \mathbb{R}$ be an arbitrary function satisfying the following conditions:

 $\forall x \in \mathbb{Z}, f(x) = -f(-x), \text{ and } \exists a < \sqrt{2} \text{ s.t. } f(x) < a^{|x|} \text{ for all } x \text{ large enough.}$

For example polynomials of the form $f(x) = \sum_{i=1}^{n} b_{2i-1} x^{2i-1}$.

- (c) Construct a function $U \in L^2(\pi)$ such that $((I P) \cdot U)(i) = f(i)$.
- (d) From now on we always assume that $f(x) = x^{-3}$. Determine

$$\sigma^2 := \mathbf{E}_{\pi} \left[(U(X_0) - \mathbf{E}(U(X_0) | \mathcal{F}_0))^2 \right].$$

(e) Prove that $\mathbf{P}(-3\sigma\sqrt{n} \le f(X_1) + \dots + f(X_n) \le 3\sigma\sqrt{n}) \ge 0.99$ for sufficiently large n.