
Exercises in Markov processes and martingales∗

2018/19 fall semester

Conditional expectation

1. Homework 1.A. (19th Sep) We roll two dices. X is the result of one of them and Z
the sum of the results. Find E [Z|X ] and E [X|Z].

2. Let (Ω,F ,P) be the probability space where Ω = [0, 1], F is the Borel σ-algebra and P is
the Lebesgue measure on it. Define the random variables X(ω) = 3ω2 and Y (ω) = 1(ω ∈
[1/2, 1])− 1(ω ∈ [0, 1/2)) for any ω ∈ Ω. What is E(X|Y )?

3. Homework 1.B. (19th Sep) Let Ω = {−1, 0,+1}, F = 2Ω and µ({−1}) = µ({0}) =
µ({+1}) = 1/3. Consider also the sub-σ-algebras

G = {∅, {−1}, {0,+1},Ω}, H = {∅, {−1, 0}, {+1},Ω}.

Let X : Ω → R be the random variable X(ω) = ω. Compute E(E(X|G)|H) and
E(E(X|H)|G).

4. Let Xj , j = 1, 2, . . . be iid. random variables with common distribution P(Xj = −1) =
P(Xj = +1) = 1/2 and let Sn = X1 + · · ·+Xn. Compute the conditional expectations
E(X1|σ(Sn)), E(Sn|σ(X1)) and E(S2

n+m|σ(Sn)).

5. Homework 1.C. (19th Sep) Suppose that the random variables X, Y, Z are jointly
defined on a probability space. Prove that

(a) E(X) = E(E(X|Y )),

(b) E(Y |Z) = E(E(Y |X,Z)|Z).

6. Homework 1.D. (19th Sep) Prove the following general version of Bayes’s formula.
Given the probability space (Ω,F ,P) and let G be a sub-σ-algebra of F . Let G ∈ G and
A ∈ F with P(A) > 0. Show that

P (G|A) =

∫

G

P (A|G) dP
∫

Ω

P (A|G) dP .

7. Prove the conditional variance formula

Var(X) = E [Var(X|Y )] + Var (E [X|Y])

where Var(X|Y ) = E [X2|Y ]− (E [X|Y ])2.

∗Most of the exercises by courtesy of Károly Simon, some of them by courtesy of Bálint Tóth.
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8. Let X1, X2, . . . be iid. random variables and N be a non-negative integer valued random
variable which is independent of Xi, i ≥ 1. Prove that

Var

(

N
∑

i=1

Xi

)

= E [N ] Var(X) + (E [X ])2Var(N).

9. Let X be a random variable. Assume that Y is another random variable for which
P (Y = 0 or Y = 1) = 1. Prove that Y ∈ σ(X) iff there exists a ϕ : R → R Borel
measurable function such that Y = ϕ(X).

10. Assume that X, Y are jointly continuous random variables with joint density f(x, y).
Prove that

E [Y |X ] = E [Y |σ(X)] =

∫

R

yf(X, y) dy

∫

R

f(X, y) dy
.

11. Homework 1.E. (19th Sep) Let Y ∈ σ(G). Prove that

E [X|G] ≥ Y ⇐⇒ ∀A ∈ G E [X · 1A] ≥ E [Y · 1A] .

12. Let X and Y be random variables on the same probability space. Prove that X and Y
are independent iff for every ϕ : R → R bounded measurable functions we have

E [ϕ(Y )|X ] = E [ϕ(Y )] .

13. Homework 1.F. (19th Sep) Let X, Y ∈ L1(Ω,F ,P) satisfying

E [X|Y ] = Y and E [Y |X ] = X.

Show that P(X = Y ) = 1.

Hint: If X 6= Y , then there is a c ∈ Q such that either X ≤ c and Y > c or X > c and
Y ≤ c.

Martingales

14. Homework 2.A. (27th Sep) Let Xt be a Poisson(1), that is, a Poisson process with
rate λ = 1. (See Durrett’s book p. 139 for the definition.) Find E [X1|X2] and E [X2|X1].

15. Homework 2.B. (27th Sep) Let Sn := X1 + · · · +Xn where X1, X2, . . . are iid. with
X1 ∼ Exp(1). Verify that

Mn :=
n!

(1 + Sn)n+1
· eSn

is a martingale with respect to the natural filtration Fn.

16. Homework 2.C. (27th Sep) For every i = 1, . . . , m let
{

M
(i)
n

}∞

n=1
be a sequence of

martingales with respect to {Xn}∞n=1. Show that Mn := max
1≤i≤n

M
(i)
n is a submartingal with

respect to {Xn}.

17. Homework 3.A. (3rd Oct) There are n white and n black balls in an urn. We pull out
all of them one-by-one without replacement. Whenever we pull
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• a black ball we have to pay 1$,

• a white ball we receive 1$.

Let X0 := 0 and Xi be the amount we gained or lost after the ith ball was pulled. We
define

Yi :=
Xi

2n− i
for 1 ≤ i ≤ 2n− 1, and Zi :=

X2
i − (2n− i)

(2n− i)(2n− i− 1)
for 1 ≤ i ≤ 2n− 2.

(a) Prove that Y = (Yi) and Z = (Zi) are martingales.

(b) Find Var(Xi).

18. Homework 3.B. (3rd Oct) Let X, Y be two independent Exp(λ) random variables
and Z := X + Y . Show that for any non-negative measurable h we have E [h(X)|Z] =
1
Z

Z
∫

0

h(t) dt.

19. Homework 3.C. (3rd Oct) Construct a martingale which is NOT a Markov chain.

20. Homework 4.A. (10th Oct) Let ξ1, ξ2, . . . be a sequence of iid. random variables
with P(ξ1 = 1) = P(ξ1 = −1) = 1/2 and define the simple symmetric random walk
Sn = ξ1+· · ·+ξn. For the integers k and l, define the hitting times T−k = inf{n : Sn = −k}
and Tl = inf{n : Sn = l} and the stopping time given by their minimum T = min(T−k, Tl).

(a) Find E(ST ) by using the optional stopping theorem for the martingale Sn.

(b) What is P(T−k < Tl)? Hint: Note that the random variable ST can only take two
values.

(c) We have shown previously that Mn = S2
n − n is a martingale. Apply the optional

stopping theorem for Mn and T and compute E(T ).

21. Homework 4.B. (10th Oct) In the casino, a player’s winnings per unit stake on game n
are ξn where {ξ}∞n=1 are iid. random variables with P(ξn = +1) = p and P(ξn = −1) = q
with p + q = 1 and p > 1/2. In other words with probability q < 1/2 the player loses
the stake and with probability p she gets back twice of the stake. Let Cn be the player’s
stake on game n. We assume that Cn is previsible, that is Cn+1 ∈ Fn := σ (ξ1, . . . , ξn)
for all n. Let Yn denote the wealth of the player after the nth round. We assume that
0 ≤ Cn ≤ Yn−1. We call α = p log p+ q log q + log 2 the entropy.

(a) Define the function
f(x) = p ln(1 + x) + q ln(1− x)

for x ∈ [0, 1]. Show that f is strictly concave. Find maxx∈[0,1] f(x).

(b) Prove that for any previsible betting strategy Cn, the process Zn = log Yn − nα is a
supermartingale. Show that this implies E(log Yn − log Y0) ≤ nα. Hint: Introduce
xn = Cn/Yn−1 so that Yn+1 = Yn · (1 + xn+1ξn+1). The function f (defined above)
appears when calculating E(log(Yn+1) | Fn).

(c) Show that there is a betting strategy for which Zn is a martingale and that E(log Yn−
log Y0) = nα is achieved. (This is sometimes called the log-optimal portfolio in
economics.)

22. Homework 4.C. (10th Oct) Let ξ1, ξ2, . . . be independent standard normal variables.
Recall that their moment generating function is M(θ) = E

[

eθξi
]

= eθ
2/2. Let a, b ∈ R

and define Sn =
n
∑

k=1

ξk and Xn = eaSn−bn. Prove that
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(a) Xn → 0 a.s. iff b > 0.

(b) Xn → 0 in Lr iff r < 2b
a2
.

23. Homework 5.A. (17th Oct) Extension of part (iii) of Doob’s optional stopping theo-
rem. Let X be a supermartingale. Let T be a stopping time with E [T ] < ∞ as in part
(iii) of Doob’s optional stopping theorem. Assume that there is a C such that

E [|Xk −Xk−1||Fk−1] ≤ C

holds almost surely for all k > 0. Prove that E [XT ] ≤ E [X0].

24. Let X,Z be Rd-valued random variables defined on the (Ω,F ,P). Assume that

E
[

eit·X+is·Z
]

= E
[

eitX
]

· E
[

eisZ
]

for all s, t ∈ Rn. Prove that X,Z are independent.

Normal distribution

25. Let Y ∼ N (µµµ,Σ) in R2, Y = (Y1, Y2) and let a1, a2 ∈ R. Find the distribution of
a1Y1 + a2Y2.

26. Homework 5.B. (17th Oct) Let Y ∼ N (µµµ,Σ) and let B be a non-singular matrix.
Find the distribution of X = B ·Y.

27. Homework 5.C. (17th Oct) Let X ∼ N (µµµ,Σ) in Rn. Let X1 := (X1, . . . , Xp) and
X2 := (Xp+1, . . . , Xn). Let Σ, Σ1 and Σ2 the covariance matrices of X , X1 and X2

respectively. Prove that X1 and X2 are independent if and only if

Σ =

(

Σ1 0
0 Σ2

)

.

28. Homework 5.D. (17th Oct) Construct a random vector (X, Y ) such that both X
and Y are one-dimensional normal distributions but (X, Y ) is NOT a bivariate normal
distribution.

29. Homework 5.E. (17th Oct) Let X = (X1, . . . , Xd) be standard multivariate normal
distribution. Let Σ be an n× n positive semi-definite, symmetric matrix and let µµµ ∈ Rd.
Prove that there exists an affine transformation T : Rd → Rd, such that T (X) ∼ N (µµµ,Σ).

30. Homework 5.F. (17th Oct) Let X be the height of the father and let Y be the height
of the son in sample of father-son pairs. Assume that (X, Y ) is bivariate normal. Assume
that in inches

E [X ] = 68, E [Y ] = 69, σX = σY = 2, ρ = 0.5

where ρ is the correlation of (X, Y ). Find the conditional distribution of Y given X = 80
(6 feet 8 inches).
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Martingales

31. Homework 6.A. (24th Oct) Let Xn be a discrete time birth–death process with tran-
sition probabilities

p(i, i+ 1) = pi, p(i, i− 1) = 1− pi = qi

for i ≥ 1 which are all assumed to be strictly positive. We define the function

g : N → R+, g(0) = 0, g(k) = 1 +

k−1
∑

j=1

j
∏

i=1

qi
pi
.

(a) Prove that Zn := g(Xn) is a martingale for the natural filtration.

(b) Let 0 < i < n be fixed. Find the probability that a process started from i gets to n
earlier than to 0.

32. Homework 6.B. (24th Oct) Let an be a deterministic sequence of real numbers and
let {εn} be an iid. sequence of random variables satisfying P (εn = ±1) = 1

2
. Show that

∞
∑

n=1

εnan converges almost surely if and only if
∞
∑

n=1

a2n < ∞.

33. Homework 6.C. (24th Oct) Let X1, X2, . . . be an independent sequence of random

variables with X1 = 0 and for n ≥ 2 with P (Xn = −n2) = 1
n2 and P

(

Xn = n2

n2−1

)

=

1− 1
n2 . Let Sn := X1 + · · ·+Xn. Show that

(a) {Sn} is a martingale with zero expectation which converges to ∞ a.s.

(b) lim
n→∞

Sn/n = 1.

Hint: The Borel–Cantelli lemma can be useful which says that if the events A1, A2, . . .
satisfy

∑

k P(Ak) < ∞, then with probability one, only finitely many of them happen.

34. Homework 7.A. (31st Oct) Let X = (Xn) be an L2 random walk that is a martingale,
i.e. let Zk be iid. random variables with 0 mean and finite variance σ2 and let Xn =
Z1 + · · ·+ Zn. Prove that the angle bracket process of X is An = nσ2.

35. Homework 7.B. (31st Oct) Let Xn be an L2 martingale with angle bracket process An.
Let Cn be previsible and also L2. Prove that the angle bracket process of the martingale
transform Y = C •X is given by C2 • A.

36. Homework 7.C. (31st Oct) Let M = (Mn) be a martingale with M0 = 0 and |Mk −
Mk−1| < C for a C ∈ R. Let T be a stopping time which is finite a.s. and define

Un =

n
∑

k=1

(Mk −Mk−1)
2
1T≥k, Vn = 2

∑

1≤i<j≤n

(Mi −Mi−1)(Mj −Mj−1)1T≥j ,

U∞ =

∞
∑

k=1

(Mk −Mk−1)
2
1T≥k, V∞ = 2

∑

1≤i<j

(Mi −Mi−1)(Mj −Mj−1)1T≥j .

(a) Prove that M2
T∧n = Un + Vn and M2

T = U∞ + V∞.

(b) Assume further that E [T 2] < ∞. Show that lim
n→∞

Un = U∞ a.s. and E [U∞] < ∞
and E [Vn] = E [V∞] = 0.

(c) Conclude that if E [T 2] < ∞, then lim
n→∞

E [M2
T∧n] = E [M2

T ].
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37. Homework 7.D. (31st Oct)Wald equalities. Let Y1, Y2, . . . be iid. L
1 random variables.

Let Sn := Y1 + · · · + Yn and we write µ = E [Yi]. Let T be a stopping time satisfying
E [T ] < ∞.

(a) Prove that
E [ST ] = µ · E [T ] .

(b) Assume further that Yi are bounded (∃Ci ∈ R with |Yi| < Ci) and E [T 2] < ∞. We
write σ2 = Var(Yi). Then

E
[

(ST − µT )2
]

= σ2 ·E [T ] .

Hint: Introduce an appropriate martingale and apply the result of the previous
exercise.

38. Homework 8.A. (7th Nov) A branching process Z = (Zn)
∞
n=0 is defined recursively

by a given family of non-negative integer valued iid. random variables
{

X
(n)
k

}∞

k,n=1
as

follows:
Z0 := 1, Zn+1 := X

(n+1)
1 + · · ·+X

(n+1)
Zn

, n ≥ 0.

Let µ = E
[

X
(n)
k

]

and Fn = σ(Z0, Z1, . . . Zn). We write f(s) for the generating function

of the offspring distribution, that is

f(s) = E
(

sX
(n)
k

)

=

∞
∑

m=0

P
(

X
(n)
k = m

)

sm

for any k and n. Further, let

{extinction} = {Zn → 0} = {∃n, Zn = 0} , {explosion} = {Zn → ∞}

and denote q = P (extinction). Recall that q is the smaller (if there are two) fixed point
of f(s), that is q is the smallest solution of f(q) = q.

(a) Prove by induction that E [Zn] = µn.

(b) Show that E
[

sZn+1 |Fn

]

= f(s)Zn for every s ≥ 0. Explain that qZn is a martingale
and lim

n→∞
Zn = Z∞ exists a.s.

(c) Let T = min {n : Zn = 0} be the extinction time with T = ∞ if Zn > 0 always. Prove
by dominated convergence that q = E

[

qZT

]

= E
[

qZ∞ · 1T=∞

]

+ E
[

qZT · 1T<∞

]

.

(d) Prove that E
[

qZ∞ · 1T=∞

]

= 0.

(e) Conclude that if T (ω) = ∞ then Z∞ = ∞, hence

P (extinction) +P (explosion) = 1.

39. Homework 8.B. (7th Nov) Assume that for the offspring distribution of the branching
process Zn, we have

µ = E
[

X
(n)
k

]

< ∞ and 0 < σ2 = Var(X
(n)
k ) < ∞.

Prove that

(a) Mn = Zn/µ
n is a martingale for the natural filtration Fn.
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(b) Show that E
[

Z2
n+1|Fn

]

= µ2Z2
n + σ2Zn and conclude that the martingale Mn is

bounded in L2 if and only if µ > 1.

(c) Assume that µ > 1 which implies that M∞ = lim
n→∞

Mn exists in L2 and a.s. Prove

that

Var(M∞) =
σ2

µ(µ− 1)
.

40. Homework 8.C. (7th Nov) Let X1, X2, . . . be iid. random variables with a continuous
distribution function. Let Ei be the event that a record occurs at time n. That is E1 = Ω
and En = {Xn > Xm, ∀m < n}. Prove that {Ei}∞i=1 are independent and P (Ei) = 1

i
.

Hint: To show the independence one can argue that for any i1 < · · · < in < in+1,
P(Ei1 . . . Ein|Ein+1) = P(Ei1 . . . Ein) holds.

41. Homework 8.D. (7th Nov) Let E1, E2, . . . be independent with P (Ei) = 1/i. Let
Yi := 1Ei

and Nn := Y1 + · · ·+ Yn. In the special case of the previous homework, Nn is
the number of records until time n.

(a) Prove that
∞
∑

k=2

Yk−1/k
log k

converges almost surely.

(b) Using Kronecker’s lemma conclude that lim
n→∞

Nn

logn
= 1 a.s.

42. Homework 9.A. (15th Nov) Assume that in the branching process Zn, q = 1 where
q is the probability of extinction. Prove that Mn = Zn/µ

n is not a uniformly integrable
martingale.

43. Homework 9.B. (15th Nov) Let C be a class of random variables of (Ω,F ,P). Assume
that C is Lp bounded for some p > 1, that is, ∃p > 1 and A ∈ R such that E [|X|p] < A
for all X ∈ C. Show that then C is UI.

44. Let C be a class of random variables of (Ω,F ,P). Assume that C is dominated by an
integrable random variable, that is ∃Y ∈ L1(Ω,F ,P) such that |X| ≤ Y a.s. ∀X ∈ C.
Show that then C is UI.

45. Homework 9.C. (15th Nov) Let C be a class of random variables on (Ω,F ,P). Prove
that C is UI if and only if the following two conditions hold

(a) C is L1-bounded, that is sup {E [|X|] : X ∈ C} < ∞ and

(b) ∀ε > 0, ∃δ > 0 s.t.

F ∈ F and P (F ) < δ =⇒ E [|X|1F ] < ε.

46. Let C and D be UI classes of random variables. Prove that

C +D = {X + Y : X ∈ C and Y ∈ D}

is also UI. Hint: Use the previous exercise.

47. Let C be a UI family of random variables. Let us define

D := {Y : ∃X ∈ C, ∃G sub-σ-algebra of F s.t. Y = E [X|G]} .

Prove that D is also UI.
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48. Homework 9.D. (15th Nov) Let X1, X2, . . . be iid. random variables with E [X+] = ∞
and E [X−] < ∞. (Recall X = X+ −X− and X+, X− ≥ 0.) Use the SLLN to prove that
Sn/n → ∞ a.s. where Sn := X1 + · · · + Xn. Hint: For M > 0 let XM

i = Xi ∧ M and
SM
n = XM

n +· · ·+XM
n . Explain why lim

n→∞
SM
n /n = E

[

XM
i

]

and lim inf
n→∞

Sn/n ≥ lim
n→∞

SM
n /n.

49. Homework 10.A. (28th Nov) (Infinite Monkey Theorem) Prove that a monkey typing
at random on a typewriter for infine time will type the complete works of Shakespeare
eventually.

50. Homework 10.B. (28th Nov) (Azuma–Hoeffding inequality)

(a) Assume that Y is a random variable which takes values from [−c, c] and E [Y ] = 0
holds. Prove that for all θ ∈ R we have

E
[

eθY
]

≤ cosh(θc) ≤ exp

(

1

2
θ2c2

)

.

Hint: Let f(z) := exp(θz), z ∈ [−c, c]. Then by the convexity of f we have

f(y) ≤ c− y

2c
f(−c) +

c+ y

2c
f(c).

(b) Let M be a martingale with M0 = 0 such that for a sequence of positive numbers
{cn}∞n=1 we have |Mn−Mn−1| ≤ cn for all n. Then the following inequality holds for
all x > 0:

P

(

sup
k≤n

Mk ≥ x

)

≤ exp

(

−1

2
x2/

n
∑

k=1

c2k

)

.

Hint: Use submartingale inequlaity as in the proof of LIL. Then present Mn (in the
exponent) like a telescopic sum, then use the orthogonality of martingale increments.
Use the first part of this exercise and find the minimum in θ of the expression in the
exponent.

51. Homework 10.C. (28th Nov) m balls are placed one by one into n urns independently
at random with uniform distribution among the urns. Let Fk be the σ-algebra generated
by the place of the first k balls and define the martingale Mk = E(N |Fk) where N is the
number of empty urns after placing the last ball. Let Yk be the number of empty urns
after placing the kth ball. Show that

(a) Mk = Yk

(

n−1
n

)m−k
;

(b) |Mk −Mk−1| ≤
(

n−1
n

)m−k
;

(c)

P(|N − µ| ≥ ε) ≤ 2 exp

(

−ε2(n− 1/2)

n2 − µ2

)

where µ = EN = n
(

n−1
n

)m
. Hint: Use the Azuma–Hoeffding inequality for the

martingales Mk − µ and −Mk + µ.

52. (Exercise for Markov chain CLT) Consider the following Markov chain {Xn}∞n=0. The
state space is Z. The transition probabilities are p(0, 1) = p(0,−1) = 1

2
and for an

arbitrary x ∈ N+ we have

p(x, x+ 1) = p(x, 0) =
1

2
, p(−x,−x − 1) = p(−x, 0) =

1

2
.
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(a) Find the stationary measure π for Xn.

(b) Define the operator P : L1(Z, π) → L1(Z, π) by (Pg)(i) :=
∑

j∈Z

p(i, j)g(j) and let I

be the identity on L1(Z, π), i.e. P acts on g as a multiplication of an infinite matrix
and an infinite vector. Further, let f : Z → R be an arbitrary function satisfying
the following conditions:

∀x ∈ Z, f(x) = −f(−x), and ∃a <
√
2 s.t. f(x) < a|x| for all x large enough.

For example polynomials of the form f(x) =
n
∑

i=1

b2i−1x
2i−1.

(c) Construct a function U ∈ L2(π) such that ((I − P ) · U)(i) = f(i).

(d) From now on we always assume that f(x) = x−3. Determine

σ2 := Eπ

[

(U(X0)− E(U(X0)|F0))
2] .

(e) Prove that P (−3σ
√
n ≤ f(X1) + · · ·+ f(Xn) ≤ 3σ

√
n) ≥ 0.99 for sufficiently large

n.
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