# Markov processes and martingales exam 

18th Jan 2019

## Theoretical part

1. (a) (2 points) Describe the monkey at the typewriter problem.
(b) (7 points) Compute the expected number of letters for the appearance of the word ABRACADABRA. You may use Doob's optional stopping theorem without proof.
2. (a) (2 points) For a discrete time stochastic process define the number of upcrossings of an interval.
(b) (3 points) State and prove Doob's upcrossing lemma for the number of upcrossings for a supermartingale.
(c) (4 points) State and prove Doob's forward convergence theorem.
3. (a) (3 points) State the central limit theorem for martingales without proof.
(b) (6 points) State and prove the central limit theorem for Markov chains using the central limit theorem for martingales.

## Exercise part

4. There are $n$ white and $n$ black balls in an urn. We pull out all of them one-by-one without replacement. Whenever we pull

- a black ball we have to pay $1 \$$,
- a white ball we receive $1 \$$.

Let $X_{0}:=0$ and $X_{i}$ be the amount we gained or lost after the $i$ th ball was pulled. We define

$$
Y_{i}:=\frac{X_{i}}{2 n-i} \text { for } 1 \leq i \leq 2 n-1, \quad \text { and } \quad Z_{i}:=\frac{X_{i}^{2}-(2 n-i)}{(2 n-i)(2 n-i-1)} \text { for } 1 \leq i \leq 2 n-2
$$

(a) (6 points) Prove that $Y=\left(Y_{i}\right)$ and $Z=\left(Z_{i}\right)$ are martingales.
(b) (3 points) Find $\operatorname{Var}\left(X_{i}\right)$.
5. Let $X_{n}$ be a discrete time birth-death process with transition probabilities

$$
p(i, i+1)=\frac{1}{i+1}, \quad p(i, i-1)=\frac{i}{i+1}
$$

for $i \geq 1$. These probabilities can be understood as follows. In state $i$, any of the $i$ individuals can disappear or a new one can appear with equal probabilities. We define the function

$$
g: \mathbb{N} \rightarrow \mathbb{R}^{+}, \quad g(0)=0, \quad g(k)=1+\sum_{j=1}^{k-1} j!\quad k=1,2, \ldots
$$

(a) (4 points) Prove that $Z_{n}:=g\left(X_{n}\right)$ is a martingale for the natural filtration.
(b) (5 points) Evaluate the function $g(k)$ for $k=0,1,2, \ldots, 5$ and find the probability that a process started from 1 gets to 5 earlier than to 0 .
6. $m$ balls are placed one by one into $n$ urns independently at random with uniform distribution among the urns. Let $\mathcal{F}_{k}$ be the $\sigma$-algebra generated by the place of the first $k$ balls and define the martingale $M_{k}=\mathbf{E}\left(N \mid \mathcal{F}_{k}\right)$ where $N$ is the number of empty urns after placing the last ball. Let $Y_{k}$ be the number of empty urns after placing the $k$ th ball. Show that
(a) (2 points) $M_{k}=Y_{k}\left(\frac{n-1}{n}\right)^{m-k}$;
(b) (2 points) $\left|M_{k}-M_{k-1}\right| \leq\left(\frac{n-1}{n}\right)^{m-k}$;
(c) (3 points)

$$
\mathbf{P}(|N-\mu| \geq \varepsilon) \leq 2 \exp \left(-\frac{\varepsilon^{2}(n-1 / 2)}{n^{2}-\mu^{2}}\right)
$$

where $\mu=\mathbf{E} N=n\left(\frac{n-1}{n}\right)^{m}$. Hint: Use the Azuma-Hoeffding inequality for the martingales $M_{k}-\mu$ and $-M_{k}+\mu$. It says that if $\left|X_{n}-X_{n-1}\right| \leq c_{n}$ for all $n$ for a martingale $X_{n}$ with $X_{0}=0$, then

$$
\mathbf{P}\left(\sup _{k \leq n} X_{k} \geq x\right) \leq \exp \left(-\frac{1}{2} x^{2} / \sum_{k=1}^{n} c_{k}^{2}\right) .
$$

(d) (2 points) Assume that $m=n$ and they are large, i.e. $n \rightarrow \infty$. How much is $\mu$ asymptotically? Use the previous part of the exercise for $\varepsilon=K \sqrt{n}$ to show that the upper bound on the probability $\mathbf{P}(|N-\mu| \geq \varepsilon)$ has a limit in $(0,1)$.

