Markov processes and martingales exam

4th Jan 2019

Theoretical part

1. (a) (2 points) Describe what Pólya's urn model is.
(b) (7 points) Prove that the ratio of one of the colors is a martingale and it converges. In the case when the limit is the uniform distribution, identify this limit distribution with computations.
2. (9 points) Suppose that X_{1}, X_{2}, \ldots are independent random variables with zero mean and variance $\sigma_{k}^{2}=$ $\operatorname{Var}\left(X_{k}\right)$. State and prove the theorem about the relation between the finiteness of $\sum_{k=1}^{\infty} \sigma_{k}^{2}$ and the almost sure convergence of $\sum_{k=1}^{\infty} X_{k}$. The Pythagorean formula, the L^{2} convergence theorem for martingales and the fact that a stopped martingale is a martingale can be used without proof.
3. (a) (2 points) Define the Doob martingale, i.e. the conditional expectation of a single random variable with respect to a filtration. Show that it is a martingale.
(b) (7 points) State and prove Lévy's upward theorem. The uniform integrability does not have to be proved. For the identification of the almost sure and L^{1} limit to be the appropriate conditional expectation, Doob's forward convergence theorem can be used.

Exercise part

4. Martin Gaal the Slovak gambler with Hungarian origin plays in the casino. His winnings per unit stake on game n are ξ_{n} where $\{\xi\}_{n=1}^{\infty}$ are iid. random variables with $\mathbf{P}\left(\xi_{n}=+1\right)=0.6$ and $\mathbf{P}\left(\xi_{n}=-1\right)=0.4$. In other words with probability 0.4 Martin loses the stake and with probability 0.6 he gets back twice of the stake. Let C_{n} be Martin's stake on game n which is assumed to be previsible. Let Y_{n} denote Martin's wealth after the nth round. We assume that $0 \leq C_{n} \leq Y_{n-1}$. We call $\alpha=0.6 \log 0.6+0.4 \log 0.4+\log 2$ the entropy.
(a) (3 points) Define the function

$$
f(x)=0.6 \ln (1+x)+0.4 \ln (1-x)
$$

for $x \in[0,1]$. Show that f is strictly concave. Find $\max _{x \in[0,1]} f(x)$.
(b) (3 points) Prove that for any previsible betting strategy C_{n}, the process $Z_{n}=\log Y_{n}-n \alpha$ is a supermartingale. Show that this implies $\mathbf{E}\left(\log Y_{n}-\log Y_{0}\right) \leq n \alpha$. Hint: Introduce $x_{n}=C_{n} / Y_{n-1}$ so that $Y_{n+1}=Y_{n} \cdot\left(1+x_{n+1} \xi_{n+1}\right)$. The function f (defined above) appears when calculating $\mathbf{E}\left(\log \left(Y_{n+1}\right) \mid \mathcal{F}_{n}\right)$.
(c) (3 points) Show that there is a betting strategy for which Z_{n} is a martingale and that $\mathbf{E}\left(\log Y_{n}-\right.$ $\left.\log Y_{0}\right)=n \alpha$ is achieved.
5. Let $M=\left(M_{n}\right)$ be a martingale with $M_{0}=0$ and $\left|M_{k}-M_{k-1}\right|<C$ for a $C \in \mathbb{R}$. Let T be a stopping time which is finite a.s. and define

$$
\begin{aligned}
& U_{n}=\sum_{k=1}^{n}\left(M_{k}-M_{k-1}\right)^{2} \mathbb{1}_{T \geq k}, \quad V_{n}=2 \sum_{1 \leq i<j \leq n}\left(M_{i}-M_{i-1}\right)\left(M_{j}-M_{j-1}\right) \mathbb{1}_{T \geq j}, \\
& U_{\infty}=\sum_{k=1}^{\infty}\left(M_{k}-M_{k-1}\right)^{2} \mathbb{1}_{T \geq k}, \quad V_{\infty}=2 \sum_{1 \leq i<j}\left(M_{i}-M_{i-1}\right)\left(M_{j}-M_{j-1}\right) \mathbb{1}_{T \geq j} .
\end{aligned}
$$

(a) (3 points) Prove that $M_{T \wedge n}^{2}=U_{n}+V_{n}$ and $M_{T}^{2}=U_{\infty}+V_{\infty}$.
(b) (4 points) Assume further that $\mathbf{E}\left[T^{2}\right]<\infty$. Show that $\lim _{n \rightarrow \infty} U_{n}=U_{\infty}$ a.s. and $\mathbf{E}\left[U_{\infty}\right]<\infty$ and $\mathbf{E}\left[V_{n}\right]=\mathbf{E}\left[V_{\infty}\right]=0$.
(c) (2 points) Conclude that if $\mathbf{E}\left[T^{2}\right]<\infty$, then $\lim _{n \rightarrow \infty} \mathbf{E}\left[M_{T \wedge n}^{2}\right]=\mathbf{E}\left[M_{T}^{2}\right]$.
6. (a) (4 points) Let \mathcal{C} be a class of random variables of $(\Omega, \mathcal{F}, \mathbf{P})$. Assume that \mathcal{C} is L^{p} bounded for some $p>1$, that is, $\exists p>1$ and $A \in \mathbb{R}$ such that $\mathbf{E}\left[|X|^{p}\right]<A$ for all $X \in \mathcal{C}$. Show that then \mathcal{C} is uniformly integrable.
(b) (5 points) Let $\varepsilon>0$ be fixed. Let X_{n} be a random variable with density

$$
f_{n}(x)= \begin{cases}\frac{c_{\varepsilon, n}}{|x|^{2+\varepsilon}} & \text { if } 1 \leq|x| \leq n \\ 0 & \text { otherwise }\end{cases}
$$

Compute the value of $c_{\varepsilon, n}$. Using the previous part of the exercise show that the sequence $\left(X_{n}\right)_{n=1}^{\infty}$ is uniformly integrable.

