Markov processes and martingales exam

19th Dec2018

Theoretical part

- 1. (a) (2 points) Define what a stopping time is with respect to a filtration.
 - (b) (7 points) State and prove the theorem about the supermartingale property of stopped supermartingales. (Other results used in this proof also need to be proved.)
- 2. (9 points) State and prove the Pythagorean formula for L^2 martingales and the convergence result about L^2 bounded martingales.
- 3. (a) (2 points) What does ergodicity of a dynamical system mean in terms of invariant sets?
 - (b) (2 points) Describe the rotation of the circle.
 - (c) (5 points) State and prove the necessary and sufficient condition learnt on the class for ergodicity in the rotation of the circle.

Exercise part

- 4. (9 points) Let X_j , j = 1, 2, ... be iid. random variables with common distribution $\mathbf{P}(X_j = 1) = 2/3$ and $\mathbf{P}(X_j = -1) = 1/3$ and let $S_n = X_1 + \cdots + X_n$. Compute the conditional expectations $\mathbf{E}(X_1 | \sigma(S_n))$, $\mathbf{E}(S_n | \sigma(X_1))$ and $\mathbf{E}(S_{n+m}^2 | \sigma(S_n))$.
- 5. Let ξ_1, ξ_2, \ldots be independent standard normal variables. Recall that their moment generating function is $M(\theta) = \mathbf{E}\left[e^{\theta\xi_i}\right] = e^{\theta^2/2}$. Let $a, b \in \mathbb{R}$ and define $S_n = \sum_{k=1}^n \xi_k$ and $X_n = e^{aS_n bn}$. Prove that
 - (a) (3 points) $X_n \to 0$ a.s. iff b > 0;
 - (b) (3 points) $X_n \to 0$ in L^r iff $r < \frac{2b}{a^2}$;
 - (c) (3 points) X_n is uniformly integrable iff $2b < a^2$.*
- 6. Azuma–Hoeffding inequality
 - (a) (4 points) Assume that Y is a random variable which takes values from [-c, c] and $\mathbf{E}[Y] = 0$ holds. Prove that for all $\theta \in \mathbb{R}$ we have

$$\mathbf{E}\left[e^{\theta Y}\right] \le \cosh(\theta c) \le \exp\left(\frac{1}{2}\theta^2 c^2\right)$$

Hint: Let $f(z) := \exp(\theta z), z \in [-c, c]$. Then by the convexity of f we have

$$f(y) \le \frac{c-y}{2c}f(-c) + \frac{c+y}{2c}f(c).$$

(b) (5 points) Let M be a martingale with $M_0 = 0$ such that for a sequence of positive numbers $\{c_n\}_{n=1}^{\infty}$ we have $|M_n - M_{n-1}| \le c_n$ for all n. Then the following inequality holds for all x > 0:

$$\mathbf{P}\left(\sup_{k\leq n} M_k \geq x\right) \leq \exp\left(-\frac{1}{2}x^2 / \sum_{k=1}^n c_k^2\right)$$

Hint: Use submartingale inequality as in the proof of LIL. Then present M_n (in the exponent) like a telescopic sum, then use the orthogonality of martingale increments. Use the first part of this exercise and find the minimum in θ of the expression in the exponent.

^{*}The true condition of uniform integrability in this exercise is $2b > a^2$ or a = b = 0.