Extreme value theory midterm exam, 4 May 2022

1. (a) What does it mean that a function is slowly varying at 0 ?
(b) Which of the functions

$$
f(x)=\sin (\sqrt{x}), \quad g(x)=\sin \left(\frac{1}{\log x}\right)
$$

defined for $x>0$ are slowly varying at 0 ?
2. For functions $f: \mathbb{R} \rightarrow \mathbb{R}$, consider Cauchy's functional equation

$$
f(x+y)=f(x)+f(y) .
$$

Prove that the only solutions for the equation are the linear functions $f(x)=\alpha x$ for some $\alpha \in \mathbb{R}$ if we assume that f is monotonic on \mathbb{R}.
3. Let X_{1}, X_{2}, \ldots be independent and identically distributed random variables with common distribution function $F(x)=\mathbf{P}\left(X_{i}<x\right)$. Let $M_{n}:=\max _{1 \leq i \leq n} X_{i}$. If $F(x)<1$ for all $x<\infty$ and $\lim _{x \rightarrow \infty} x^{\alpha}(1-F(x))=b$ for some fixed constants $\alpha, b \in(0, \infty)$ (that is, $1-F(x) \sim b x^{-\alpha}$ as $\left.x \rightarrow \infty\right)$, then show that the distribution of $(b n)^{-1 / \alpha} M_{n}$ converges weakly to the Fréchet distribution:

$$
\mathbf{P}\left((b n)^{-1 / \alpha} M_{n}<x\right) \rightarrow \mathbb{1}(x>0) \exp \left(-x^{-\alpha}\right) .
$$

4. Let U_{1}, U_{2}, \ldots be a sequence of independent and identically distributed uniform random variables on $[0,1]$. Let $N_{n}=\min \left(U_{1}^{2}, \ldots, U_{n}^{2}\right)$ for $n=1,2, \ldots$ Which non-trivial limit distribution does the renormalized sequence of N_{n} converge to? Under what normalization?
Hint: Use the fact that $\min \left(U_{1}^{2}, \ldots, U_{n}^{2}\right)=-\max \left(-U_{1}^{2}, \ldots,-U_{n}^{2}\right)$ and compute the tail probability function of the random variable $-U_{1}^{2}$.
5. Consider the tail probability function

$$
\bar{F}(x)= \begin{cases}e^{-\frac{2}{1-x}} & \text { if } x<1 \\ 0 & \text { if } x \geq 1\end{cases}
$$

Compute the corresponding hazard rate function $h(x)$. Check the condition to belong to the maximum domain of attraction of the Gumbel distribution, that is,

$$
\frac{\bar{F}(x+t / h(x))}{\bar{F}(x)} \rightarrow e^{-t}
$$

for all $t \in \mathbb{R}$ as x goes to the right endpoint of the distribution. Compute the normalization constants $b_{n}=\bar{F}^{-1}(1 / n)$ and $a_{n}=1 / h\left(b_{n}\right)$ as well.
6. Let X_{2}, X_{3}, \ldots be an independent but not identically distributed sequence of random variables, let X_{k} be exponential with parameter $\lambda_{k}=\log k+2 \log \log k$. Denote by $M_{n}=\max \left(X_{2}, \ldots, X_{n}\right)$ the maximum record up to n.
(a) Show that for all $K \in(0,1)$,

$$
\sum_{n=2}^{\infty} e^{-\lambda_{n} K}=\infty
$$

and for all $K \geq 1$,

$$
\sum_{n=2}^{\infty} e^{-\lambda_{n} K}<\infty
$$

holds.
(b) Conclude that with probability one

$$
\limsup _{n \rightarrow \infty} X_{n}=1
$$

Hint: It can be used without proof that with probability one for all $K \in(0,1)$ there are infinitely many indices n such that $X_{n}>K$ whereas for all $K \geq 1$ there are finitely many indices n such that $X_{n}>K$.
(c) Show that with positive probability the maximum record is broken infinitely many times. Compute this probability.
Hint: Observe that the maximum record is broken infinitely many times if and only if $X_{n}<1$ for all indices n, since $\lim \sup _{n \rightarrow \infty} X_{n}=1$.

