Exercises in Extreme value theory

2020 spring semester

1. Homework 1.A (26th Feb 2020) Show that $L(t)=\log t$ is a slowly varying function but t^{ϵ} is not if $\epsilon \neq 0$.
2. If the random variable X has distribution F with finite variance, then show that the condition

$$
\lim _{x \rightarrow \infty} \frac{x^{2} \mathbf{P}(|X|>x)}{\int_{|y| \leq x} y^{2} \mathrm{~d} F(y)}=0
$$

automatically holds.
Hint: To obtain a contradiction, suppose that $x^{2} \mathbf{P}(|X|>x)$ does not converge to 0 , i.e. along an increasing sequence $x_{n} \rightarrow \infty$, it is at least ε. If this happens, then using

$$
\mathbf{E}\left(|X|^{2}\right) \geq \sum_{n=2}^{\infty}\left(x_{n}^{2}-x_{n-1}^{2}\right) \mathbf{P}\left(|X|>x_{n}\right)
$$

one can give an infinite lower bound on the second moment of X.
3. Let W_{1} and W_{2} be independent standard normal random variables.
(a) Homework 1.B (26th Feb 2020) Check that $1 / W_{2}^{2}$ has the Lévy distribution, that is, the stable law with index $\alpha=1 / 2$ and $\kappa=1$, i.e. it has density

$$
\frac{1}{\sqrt{2 \pi y^{3}}} \exp \left(-\frac{1}{2 y}\right) \quad \text { for } y \geq 0
$$

(b) Prove that W_{1} / W_{2} has Cauchy distribution.
4. Homework 1.C (26th Feb 2020) Let $\tau=\inf \left\{t>0: B_{t}=1\right\}$ be the hitting time of level 1 by the standard Brownian motion B_{t} which starts from $B_{0}=0$. Show that τ has the Lévy distribution, that is, its density is $\left(2 \pi x^{3}\right)^{-1 / 2} \exp (-1 /(2 x))$ for $x>0$.
Hint: It can be used without proof that as a consequence of the reflection principle

$$
\mathbf{P}\left(\max \left\{B_{s}: s \in[0, t]\right\}>x\right)=2\left(1-\Phi\left(\frac{x}{\sqrt{t}}\right)\right)
$$

where $\Phi(x)=\int_{-\infty}^{x}(2 \pi)^{-1 / 2} \exp \left(-y^{2} / 2\right) \mathrm{d} y$ is the normal distribution function. The distribution function of τ can be directly expressed by the probability in the above equality for $x=1$.
5. Let X have a symmetric stable law with index α. Show that $\mathbf{E}|X|^{p}<\infty$ for $p \in(0, \alpha)$.

Hint: If $\varphi(t)=\mathbf{E}\left(e^{i t X}\right)$ denotes the characteristic function of X, then the following estimate can be used without proof for $u>0$:

$$
\mathbf{P}\left(|X|>\frac{2}{u}\right) \leq \frac{1}{u} \int_{-u}^{u}(1-\varphi(t)) \mathrm{d} t
$$

and the identity

$$
\mathbf{E}\left(|X|^{p}\right)=p \int_{0}^{\infty} t^{p-1} \mathbf{P}(|X|>t) \mathrm{d} t
$$

6. Homework 2.A (11th Mar 2020) Let X_{1}, X_{2}, \ldots be an iid sequence of Poisson random variables with parameter $\lambda>0$, that is,

$$
\mathbf{P}(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}
$$

for $k=0,1,2, \ldots$ and let $M_{n}:=\max _{1 \leq i \leq n} X_{i}$. Show that there is no such normalization under which the sequence of maxima M_{n} has a non-degenerate limit law.
Hint: Show that the necessary condition

$$
\lim _{x \uparrow x_{F}} \frac{\bar{F}(x+)}{\bar{F}(x)}=1
$$

fails to hold along a sequence of integers where $\bar{F}(x)=1-F(x)$ is the tail probability function. More precisely $\bar{F}(k+1) / \bar{F}(k)$ converge to 0 for the integers $k \rightarrow \infty$.
7. Let X_{1}, X_{2}, \ldots be an iid sequence of negative binomial random variables with parameters $p \in(0,1)$ and $m \in \mathbb{N}$, that is,

$$
\mathbf{P}(X=k)=\binom{k+m-1}{k} p^{m}(1-p)^{k}
$$

for $k=0,1,2, \ldots$ and let $M_{n}:=\max _{1 \leq i \leq n} X_{i}$. Show that there is no such normalization under which the sequence of maxima M_{n} has a non-degenerate limit law.

Hint: Show that the necessary condition

$$
\lim _{x \uparrow x_{F}} \frac{\bar{F}(x+)}{\bar{F}(x)}=1
$$

fails to hold along a sequence of integers where $\bar{F}(x)=1-F(x)$ is the tail probability function. More precisely $\bar{F}(k+1) / \bar{F}(k)$ converges to $1-p$ for the integers $k \rightarrow \infty$. To this end, show and use the asymptotic identity

$$
\mathbf{P}(X=k)=\frac{k^{m-1}}{(m-1)!} p^{m}(1-p)^{k}(1+o(1))
$$

as $k \rightarrow \infty$.
8. Homework 2.B (11th Mar 2020) Suppose that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies Cauchy's functional equation

$$
f(x+y)=f(x)+f(y)
$$

for all $x, y \in \mathbb{R}$. Prove that the value of the function $f(z)$ at any $z \in \mathbb{R}$ determines all the values $f\left(\frac{p}{q} z\right)$ for any $\frac{p}{q} \in \mathbb{Q}$ rational.
9. For $f: \mathbb{R} \rightarrow \mathbb{R}$ functions, consider Cauchy's functional equation

$$
f(x+y)=f(x)+f(y) .
$$

Prove that the only solutions for the equation are the linear functions $f(x)=\alpha x$ for some $\alpha \in \mathbb{R}$, if we assume that f is
(a) Homework 2.C (11th Mar 2020) continuous;
(b) continuous at one point;
(c) monotonic on any interval;
(d) bounded on any interval;
(e) measurable.

Hint: Lusin's theorem ensures that by the measurability of f there is a subset $F \subseteq[0,1]$ with Lebesgue measure $2 / 3$ such that f is uniformly continuous on F. Then for any $h \in(0,1 / 3)$, the sets F and $F-h=\{x-h: x \in F\}$ cannot be disjoint. Use this to conclude that the function f is bounded on an interval $(0, \delta)$ for some small $\delta>0$.
10. Homework 3.A (1st Apr 2020) Let X_{1}, X_{2}, \ldots be random variables defined on the probability space $(\Omega, \mathcal{A}, \mathbf{P})$ which have the same distribution function $F(x)$, but we do not assume anything about their dependence structure. Let $M_{n}:=\max _{1 \leq i \leq n}\left|X_{i}\right|$.
(a) Suppose that there is an $\alpha>0$ such that $\int_{-\infty}^{\infty}|x|^{\alpha} \mathrm{d} F(x)<\infty$, that is, $\mathbf{E}\left(\left|X_{i}\right|^{\alpha}\right)<\infty$. Prove that for any $\varepsilon>0$ and for fixed $\delta>0$,

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(n^{-(1 / \alpha+\varepsilon)}\left|M_{n}\right|>\delta\right)=0
$$

(b) Suppose that there is an $s>0$ such that $\int_{-\infty}^{\infty} \exp (s|x|) \mathrm{d} F(x)<\infty$, that is, $\mathbf{E}\left(\exp \left(s\left|X_{i}\right|\right)\right)<$ ∞. Prove that for any sequence b_{n} that goes to ∞ and for fixed $\delta>0$,

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(\left(b_{n} \log n\right)^{-1}\left|M_{n}\right|>\delta\right)=0
$$

Hint: Use the following inequality

$$
\mathbf{P}\left(\max _{1 \leq i \leq n}\left|X_{i}\right|>\lambda\right)=\mathbf{P}\left(\cup_{i=1}^{n}\left\{\left|X_{i}\right|>\lambda\right\}\right) \leq \sum_{i=1}^{n} \mathbf{P}\left(\left|X_{i}\right|>\lambda\right)=n \mathbf{P}\left(\left|X_{i}\right|>\lambda\right)
$$

and a Markov type inequality.
11. Let X_{1}, X_{2}, \ldots be independent and identically distributed random variables with common distribution function $F(x)=\mathbf{P}\left(X_{i}<x\right)$. Let $M_{n}:=\max _{1 \leq i \leq n} X_{i}$. If $F(x)<1$ for all $x<\infty$ and $\lim _{x \rightarrow \infty} x^{\alpha}(1-F(x))=b$ for some fixed constants $\alpha, b \in(0, \infty)$ (that is, $1-F(x) \sim b x^{-\alpha}$ as $\left.x \rightarrow \infty\right)$, then show that the distribution of $(b n)^{-1 / \alpha} M_{n}$ converges weakly to the Fréchet distribution:

$$
\mathbf{P}\left((b n)^{-1 / \alpha} M_{n}<x\right) \rightarrow \mathbb{1}(x>0) \exp \left(-x^{-\alpha}\right) .
$$

12. Let X_{1}, X_{2}, \ldots be independent and identically distributed random variables with common distribution function $F(x)=\mathbf{P}\left(X_{i}<x\right)$. Let $M_{n}:=\max _{1 \leq i \leq n} X_{i}$. If $F(x)<1$ for all $x<\infty$ and $\lim _{x \rightarrow \infty} e^{\lambda x}(1-F(x))=b$ for some fixed constants $\lambda, b \in(0, \infty)$ (that is, $1-F(x) \sim b e^{-\lambda x}$ as $\left.x \rightarrow \infty\right)$, then show that the distribution of $\lambda M_{n}-\log (b n)$ converges weakly to the Gumbel distribution:

$$
\mathbf{P}\left(\lambda M_{n}-\log (b n)<x\right) \rightarrow \exp \left(-e^{-x}\right) .
$$

13. Homework 3.B (1st Apr 2020) Let X_{1}, X_{2}, \ldots be independent and identically distributed random variables with common distribution function $F(x)=\mathbf{P}\left(X_{i}<x\right)$. Let $M_{n}:=\max _{1 \leq i \leq n} X_{i}$. If $F\left(x_{0}\right)=1$ and $F(x)<1$ for all $x<x_{0}$ and $\lim _{x \rightarrow x_{0}}\left(x_{0}-x\right)^{-\alpha}(1-$ $F(x))=b$ for some fixed constants $\alpha, b \in(0, \infty)$ (that is, $1-F(x) \sim b\left(x_{0}-x\right)^{\alpha}$ as $\left.x \rightarrow x_{0}\right)$, then show that the distribution of $(b n)^{1 / \alpha}\left(M_{n}-x_{0}\right)$ converges weakly to the Weibull distribution:

$$
\mathbf{P}\left((b n)^{1 / \alpha}\left(M_{n}-x_{0}\right)<x\right) \rightarrow \mathbb{1}(x<0) \exp \left(-(-x)^{\alpha}\right)+\mathbb{1}(x \geq 0) .
$$

14. Let X_{1}, X_{2}, \ldots be independent and identically distributed random variables with common distribution function $F(x)=\mathbf{P}\left(X_{i}<x\right)$. Suppose that the common distribution has a finite right endpoint, that is,

$$
x_{F}=\sup \{x \in \mathbb{R}: F(x)<1\}<\infty
$$

and that the right endpoint has a positive mass $\mathbf{P}\left(X_{i}=x_{F}\right)=\bar{F}\left(x_{F}\right)>0$. Let $M_{n}:=$ $\max _{1 \leq i \leq n} X_{i}$. Prove that for any sequence of reals $\left(u_{n}\right)$, if the sequence of probabilities $\mathbf{P}\left(M_{n}<u_{n}\right)$ converges, then the limit is either 0 or 1 .
Hint: Use the proposition about Poisson approximation to see that it is enough to show that $n \bar{F}\left(u_{n}\right)$ goes either to 0 or to ∞.
15. Let X be a random variable with distribution function F where the tail is $1-F(x)=x^{-\alpha}$ for $x \geq 1$ with some $\alpha>0$. Then we know that $F \in \operatorname{MDA}\left(\Phi_{\alpha}\right)$. Which MDA does the distribution of X^{p} and that of $\ln (X)$ belong to if $p>0$? What are the normalization constants?
16. Suppose that $X>0$ is a random variable and $\alpha>0$ is a number. Show that the following are equivalent:
(a) X has the Fréchet distribution function

$$
\Phi_{\alpha}(x)=\left\{\begin{array}{cc}
0 & \text { if } x \leq 0 \\
\exp \left(-x^{-\alpha}\right) & \text { if } x>0
\end{array}\right.
$$

(b) $\ln X^{\alpha}$ has the Gumbel distribution function

$$
\Lambda(x)=\exp \left(-e^{-x}\right)
$$

(c) $-X^{-1}$ has the Weibull distribution function

$$
\Psi_{\alpha}(x)=\left\{\begin{array}{cl}
\exp \left(-(-x)^{\alpha}\right) & \text { if } x \leq 0 \\
1 & \text { if } x>0
\end{array}\right.
$$

Homework 3.C (1st Apr 2020) Show the equivalence of (a) and (b).
17. Let X_{1}, X_{2}, \ldots be an independent but not identically distributed sequence of random variables, let X_{k} be exponential with parameter λ_{k}. Denote by $m_{n}=\min \left(X_{1}, \ldots, X_{n}\right)$ the minimum record up to n and let $m_{\infty}=\lim _{n \rightarrow \infty} m_{n}$ which exists since m_{n} is nonincreasing.
(a) Show that if $\sum_{k=1}^{\infty} \lambda_{k}<\infty$, then with probability one, the minimum record is broken finitely many times and $m_{\infty}>0$.
(b) Show that if $\sum_{k=1}^{\infty} \lambda_{k}=\infty$, then with probability one, the minimum record is broken infinitely many times and $m_{\infty}=0$.

Hint: One can use the representation of X_{k} as the first point of a Poisson point process on \mathbb{R}_{+}with intensity λ_{k} and the fact that the union of independent Poisson point processes with intensities λ_{k} for $k=1,2, \ldots$ is a Poisson point process with intensity $\sum_{k=1}^{\infty} \lambda_{k}$.
18. Let X_{1}, X_{2}, \ldots be an independent but not identically distributed sequence of random variables, let X_{k} be exponential with parameter λ_{k}. Denote by $M_{n}=\max \left(X_{1}, \ldots, X_{n}\right)$ the maximum record up to n and let $M_{\infty}=\lim _{n \rightarrow \infty} M_{n}$ which exists since M_{n} is nondecreasing.
(a) Show that for any constant $K>0$ if

$$
\sum_{n=1}^{\infty} e^{-\lambda_{n} K}=\infty
$$

then with probability one there are infinitely many indices n such that $X_{n}>K$. Further, for any $K>0$ if

$$
\sum_{n=1}^{\infty} e^{-\lambda_{n} K}<\infty
$$

then with probability one there are finitely many indices n such that $X_{n}>K$.
Hint: Use the Borel-Cantelli lemmas.
(b) Conclude that if $\sum_{n=1}^{\infty} e^{-\lambda_{n} K}=\infty$ for any $K>0$, then with probability one, $M_{\infty}=$ ∞ and the maximum record is broken infinitely many times. If $\sum_{n=1}^{\infty} e^{-\lambda_{n} K}<\infty$ for any $K>0$, then with probability one, $M_{\infty}<\infty$ and the maximum record is broken finitely many times.
(c) If there are $K_{1}>K_{2}>0$ such that $\sum_{n=1}^{\infty} e^{-\lambda_{n} K_{1}}<\infty$ but $\sum_{n=1}^{\infty} e^{-\lambda_{n} K_{2}}=\infty$, then there is a critical K_{c} such that for smaller values of K the sum is infinite and for larger values of K the sum is finite. Show that in this case with probability one

$$
\limsup _{n \rightarrow \infty} X_{n}=K_{c}
$$

(d) Suppose that there is a critical K_{c} as described above. Show that if

$$
\sum_{n=1}^{\infty} e^{-\lambda_{n} K_{c}}=\infty
$$

then with probability one the maximum record is broken finitely many times.
Hint: The condition shows that there are infinitely many indices n such that $X_{n}>$ K_{c}, but for any $\varepsilon>0$, there are only finitely many with $X_{n}>K_{c}+\varepsilon$.
(e) Suppose that there is a critical K_{c} as described above. Show that if

$$
\sum_{n=1}^{\infty} e^{-\lambda_{n} K_{c}}<\infty
$$

then with positive probability the maximum record is broken infinitely many times. Compute this probability.
Hint: Observe that the maximum record is broken infinitely many times if and only if $X_{n}<K_{c}$ for all indices n, since $\lim \sup _{n \rightarrow \infty} X_{n}=K_{c}$.

