Extreme value theory midterm exam, 25 April 2018

1. (a) What does it mean that a function is slowly varying at infinity?
(b) Consider the function $f(x)=e^{\sqrt{\log x}}$. Show that it grows at infinity slower than any polynomial, that is, $\lim _{x \rightarrow \infty} f(x) / x^{\varepsilon}=0$ for any fixed $\varepsilon>0$.
(c) Show that $f(x)$ grows at infinity faster than any power of the logarithm, that is, $\lim _{x \rightarrow \infty}(\log x)^{k} / f(x)=0$ for any fixed $k>0$.
(d) Is $f(x)$ slowly varying at infinity?
2. Let $\tau=\inf \left\{t>0: B_{t}=1\right\}$ be the hitting time of level 1 by the standard Brownian motion B_{t} which starts from $B_{0}=0$. Show that τ has the Lévy distribution, that is, its density is $\left(2 \pi x^{3}\right)^{-1 / 2} \exp (-1 /(2 x))$ for $x>0$.

Hint: It can be used without proof that as a consequence of the reflection principle

$$
\mathbf{P}\left(\max \left\{B_{s}: s \in[0, t]\right\}>x\right)=2\left(1-\Phi\left(\frac{x}{\sqrt{t}}\right)\right)
$$

where $\Phi(x)=\int_{-\infty}^{x}(2 \pi)^{-1 / 2} \exp \left(-y^{2} / 2\right) \mathrm{d} y$ is the normal distribution function. The distribution function of τ can be directly expressed by the probability in the above equality for $x=1$.
3. Let X_{1}, X_{2}, \ldots be independent and identically distributed random variables with common distribution function $F(x)=\mathbf{P}\left(X_{i}<x\right)$. Let $M_{n}:=\max _{1 \leq i \leq n} X_{i}$. If $F\left(x_{0}\right)=1$ and $F(x)<1$ for all $x<x_{0}$ and $\lim _{x \rightarrow x_{0}}\left(x_{0}-x\right)^{-\alpha}(1-F(x))=b$ for some fixed constants $\alpha, b \in(0, \infty)$ (that is, $1-F(x) \sim b\left(x_{0}-x\right)^{\alpha}$ as $\left.x \rightarrow x_{0}\right)$, then show that the distribution of $(b n)^{1 / \alpha}\left(M_{n}-x_{0}\right)$ converges weakly to the Weibull distribution:

$$
\mathbf{P}\left((b n)^{1 / \alpha}\left(M_{n}-x_{0}\right)<x\right) \rightarrow \mathbb{1}(x<0) \exp \left(-(-x)^{\alpha}\right)+\mathbb{1}(x \geq 0) .
$$

4. Let X_{1}, X_{2}, \ldots be an iid sequence of Poisson random variables with parameter $\lambda>0$, that is,

$$
\mathbf{P}(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}
$$

for $k=0,1,2, \ldots$ and let $M_{n}:=\max _{1 \leq i \leq n} X_{i}$. Show that there is no such normalization under which the sequence of maxima M_{n} has a non-degenerate limit law.

Hint: Show that the necessary condition

$$
\lim _{x \uparrow x_{F}} \frac{\bar{F}(x+)}{\bar{F}(x)}=1
$$

fails to hold along a sequence of integers where $\bar{F}(x)=1-F(x)$ is the tail probability function. More precisely $\bar{F}(k+1) / \bar{F}(k)$ converge to 0 for the integers $k \rightarrow \infty$.
5. Let U_{1}, U_{2}, \ldots be a sequence of independent and identically distributed uniform random variables on $[0,1]$. Let $X_{k}=1 / U_{k}^{3}$ for $k=1,2, \ldots$ and form $M_{n}=\max \left(X_{1}, \ldots, X_{n}\right)$. Which non-trivial limit distribution does the renormalized sequence of M_{n} converge to? Under what normalization?
6. (a) What is a Poisson point process with given mean measure (or intensity) on $(0, \infty)$? How can the homogeneous Poisson point process (i.e. Lebesgue mean measure or constant intensity) be interpreted with iid. exponential random variables?
(b) What is the limit of the sequence of measures associated to rescaled record times observed in an iid. sequence with continuous distribution?
7. Let X_{1}, X_{2}, \ldots be an independent but not identically distributed sequence of random variables, let X_{k} be exponential with parameter λ_{k}. Denote by $m_{n}=\min \left(X_{1}, \ldots, X_{n}\right)$ the minimum record up to n and let $m_{\infty}=\lim _{n \rightarrow \infty} m_{n}$ which exists since m_{n} is nonincreasing.
(a) Show that if $\sum_{k=1}^{\infty} \lambda_{k}<\infty$, then with probability one, the minimum record is broken finitely many times and $m_{\infty}>0$.
(b) Show that if $\sum_{k=1}^{\infty} \lambda_{k}=\infty$, then with probability one, the minimum record is broken infinitely many times and $m_{\infty}=0$.

Hint: One can use the representation of X_{k} as the first point of a Poisson point process on \mathbb{R}_{+}with intensity λ_{k} and the fact that the union of independent Poisson point processes with intensities λ_{k} for $k=1,2, \ldots$ is a Poisson point process with intensity $\sum_{k=1}^{\infty} \lambda_{k}$.

