Exercises in Extreme value theory

2018 spring semester

- 1. Show that $L(t) = \log t$ is a slowly varying function but t^{ϵ} is not if $\epsilon \neq 0$.
- 2. If the random variable X has distribution F with finite variance, then show that the condition

$$\lim_{x \to \infty} \frac{x^2 \mathbf{P}(|X| > x)}{\int_{|y| \le x} y^2 dF(y)} = 0$$

automatically holds.

Hint: To obtain a contradiction, suppose that $x^2\mathbf{P}(|X| > x)$ does not converge to 0, i.e. along an increasing sequence $x_n \to \infty$, it is at least ε . If this happens, then using

$$\mathbf{E}(|X|^2) \ge \sum_{n=2}^{\infty} (x_n^2 - x_{n-1}^2) \mathbf{P}(|X| > x_n),$$

one can give an infinite lower bound on the second moment of X.

- 3. Let W_1 and W_2 be independent standard normal random variables.
 - (a) Check that $1/W_2^2$ has the Lévy distribution, that is, the stable law with index $\alpha = 1/2$ and $\kappa = 1$, i.e. it has density

$$\frac{1}{\sqrt{2\pi y^3}} \exp\left(-\frac{1}{2y}\right) \quad \text{for } y \ge 0.$$

- (b) Prove that W_1/W_2 has Cauchy distribution.
- 4. Let $\tau = \inf\{t > 0 : B_t = 1\}$ be the hitting time of level 1 by the standard Brownian motion B_t which starts from $B_0 = 0$. Show that τ has the Lévy distribution, that is, its density is $(2\pi x^3)^{-1/2} \exp(-1/(2x))$ for x > 0.

Hint: It can be used without proof that as a consequence of the reflection principle

$$\mathbf{P}\left(\max\{B_s: s \in [0, t]\} > x\right) = 2\left(1 - \Phi\left(\frac{x}{\sqrt{t}}\right)\right)$$

where $\Phi(x) = \int_{-\infty}^{x} (2\pi)^{-1/2} \exp(-y^2/2) dy$ is the normal distribution function. The distribution function of τ can be directly expressed by the probability in the above equality for x = 1.

5. Let X have a symmetric stable law with index α . Show that $\mathbf{E}|X|^p < \infty$ for $p \in (0, \alpha)$. Hint: If $\varphi(t) = \mathbf{E}(e^{itX})$ denotes the characteristic function of X, then the following estimate can be used without proof for u > 0:

$$\mathbf{P}\left(|X| > \frac{2}{u}\right) \le \frac{1}{u} \int_{-u}^{u} (1 - \varphi(t)) \, \mathrm{d}t$$

1

and the identity

$$\mathbf{E}(|X|^p) = p \int_0^\infty t^{p-1} \mathbf{P}(|X| > t) \, \mathrm{d}t.$$

6. For $f: \mathbb{R} \to \mathbb{R}$ functions, consider Cauchy's functional equation

$$f(x+y) = f(x) + f(y).$$

Prove that the only solutions for the equation are the linear functions $f(x) = \alpha x$ for some $\alpha \in \mathbb{R}$, if we assume that f is

- (a) continuous;
- (b) continuous at one point;
- (c) monotonic on any interval;
- (d) bounded on any interval;
- (e) measurable.

Hint: Lusin's theorem ensures that by the measurability of f there is a subset $F \subseteq [0,1]$ with Lebesgue measure 2/3 such that f is uniformly continuous on F. Then for any $h \in (0,1/3)$, the sets F and $F - h = \{x - h : x \in F\}$ cannot be disjoint. Use this to conclude that the function f is bounded on an interval $(0,\delta)$ for some small $\delta > 0$.

- 7. Let $X_1, X_2, ...$ be random variables defined on the probability space $(\Omega, \mathcal{A}, \mathbf{P})$ which have the same distribution function F(x), but we do not assume anything about their dependence structure. Let $M_n := \max_{1 \le i \le n} |X_i|$.
 - (a) Suppose that there is an $\alpha > 0$ such that $\int_{-\infty}^{\infty} |x|^{\alpha} dF(x) < \infty$, that is, $\mathbf{E}(|X_i|^{\alpha}) < \infty$. Prove that for any $\varepsilon > 0$ and for fixed $\delta > 0$,

$$\lim_{n \to \infty} \mathbf{P}\left(n^{-(1/\alpha + \varepsilon)} | M_n | > \delta\right) = 0.$$

(b) Suppose that there is an s > 0 such that $\int_{-\infty}^{\infty} \exp(s|x|) dF(x) < \infty$, that is, $\mathbf{E}(\exp(s|X_i|)) < \infty$. Prove that for any sequence b_n that goes to ∞ and for fixed $\delta > 0$,

$$\lim_{n \to \infty} \mathbf{P}\left((b_n \log n)^{-1} |M_n| > \delta \right) = 0.$$

Hint: Use the following inequality

$$\mathbf{P}\left(\max_{1\leq i\leq n}|X_i|>\lambda\right) = \mathbf{P}(\cup_{i=1}^n\{|X_i|>\lambda\}) \leq \sum_{i=1}^n\mathbf{P}(|X_i|>\lambda) = n\mathbf{P}(|X_i|>\lambda)$$

and a Markov type inequality.

8. Let X_1, X_2, \ldots be independent and identically distributed random variables with common distribution function $F(x) = \mathbf{P}(X_i < x)$. Let $M_n := \max_{1 \le i \le n} X_i$. If F(x) < 1 for all $x < \infty$ and $\lim_{x \to \infty} x^{\alpha}(1 - F(x)) = b$ for some fixed constants $\alpha, b \in (0, \infty)$ (that is, $1 - F(x) \sim bx^{-\alpha}$ as $x \to \infty$), then show that the distribution of $(bn)^{-1/\alpha}M_n$ converges weakly to the Fréchet distribution:

$$\mathbf{P}\left((bn)^{-1/\alpha}M_n < x\right) \to \mathbb{1}(x > 0) \exp\left(-x^{-\alpha}\right).$$

9. Let X_1, X_2, \ldots be independent and identically distributed random variables with common distribution function $F(x) = \mathbf{P}(X_i < x)$. Let $M_n := \max_{1 \le i \le n} X_i$. If F(x) < 1 for all $x < \infty$ and $\lim_{x \to \infty} e^{\lambda x} (1 - F(x)) = b$ for some fixed constants $\lambda, b \in (0, \infty)$ (that is, $1 - F(x) \sim be^{-\lambda x}$ as $x \to \infty$), then show that the distribution of $\lambda M_n - \log(bn)$ converges weakly to the Gumbel distribution:

$$\mathbf{P}(\lambda M_n - \log(bn) < x) \to \exp(-e^{-x})$$
.

10. Let X_1, X_2, \ldots be independent and identically distributed random variables with common distribution function $F(x) = \mathbf{P}(X_i < x)$. Let $M_n := \max_{1 \le i \le n} X_i$. If $F(x_0) = 1$ and F(x) < 1 for all $x < x_0$ and $\lim_{x \to x_0} (x_0 - x)^{-\alpha} (1 - F(x)) = b$ for some fixed constants $\alpha, b \in (0, \infty)$ (that is, $1 - F(x) \sim b(x_0 - x)^{\alpha}$ as $x \to x_0$), then show that the distribution of $(bn)^{1/\alpha}(M_n - x_0)$ converges weakly to the Weibull distribution:

$$\mathbf{P}((bn)^{1/\alpha}(M_n - x_0) < x) \to \mathbb{1}(x < 0) \exp(-(-x)^\alpha) + \mathbb{1}(x \ge 0).$$

11. Let $X_1, X_2, ...$ be independent and identically distributed random variables with common distribution function $F(x) = \mathbf{P}(X_i < x)$. Suppose that the common distribution has a finite right endpoint, that is,

$$x_F = \sup\{x \in \mathbb{R} : F(x) < 1\} < \infty$$

and that the right endpoint has a positive mass $\mathbf{P}(X_i = x_F) = \overline{F}(x_F) > 0$. Let $M_n := \max_{1 \le i \le n} X_i$. Prove that for any sequence of reals (u_n) , if the sequence of probabilities $\mathbf{P}(M_n < u_n)$ converges, then the limit is either 0 or 1.

Hint: Use the proposition about Poisson approximation to see that it is enough to show that $n\overline{F}(u_n)$ goes either to 0 or to ∞ .

12. Let X_1, X_2, \ldots be an iid sequence of Poisson random variables with parameter $\lambda > 0$, that is,

$$\mathbf{P}(X=k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

for k = 0, 1, 2, ... and let $M_n := \max_{1 \le i \le n} X_i$. Show that there is no such normalization under which the sequence of maxima M_n has a non-degenerate limit law.

Hint: Show that the necessary condition

$$\lim_{x \uparrow x_F} \frac{\overline{F}(x+)}{\overline{F}(x)} = 1$$

fails to hold along a sequence of integers where $\overline{F}(x) = 1 - F(x)$ is the tail probability function. More precisely $\overline{F}(k+1)/\overline{F}(k)$ converge to 0 for the integers $k \to \infty$.

13. Let $X_1, X_2, ...$ be an iid sequence of negative binomial random variables with parameters $p \in (0, 1)$ and $m \in \mathbb{N}$, that is,

$$\mathbf{P}(X=k) = \binom{k+m-1}{k} p^m (1-p)^k$$

for $k = 0, 1, 2, \ldots$ and let $M_n := \max_{1 \le i \le n} X_i$. Show that there is no such normalization under which the sequence of maxima M_n has a non-degenerate limit law.

Hint: Show that the necessary condition

$$\lim_{x \uparrow x_F} \frac{\overline{F}(x+)}{\overline{F}(x)} = 1$$

fails to hold along a sequence of integers where $\overline{F}(x) = 1 - F(x)$ is the tail probability function. More precisely $\overline{F}(k+1)/\overline{F}(k)$ converges to 1-p for the integers $k \to \infty$. To this end, show and use the asymptotic identity

$$\mathbf{P}(X=k) = \frac{k^{m-1}}{(m-1)!} p^m (1-p)^k (1+o(1))$$

as $k \to \infty$.

- 14. Let X be a random variable with distribution function F where the tail is $1 F(x) = x^{-\alpha}$ for $x \ge 1$ with some $\alpha > 0$. Then we know that $F \in \text{MDA}(\Phi_{\alpha})$. Which MDA does the distribution of X^p and that of $\ln(X)$ belong to if p > 0? What are the normalization constants?
- 15. Suppose that X > 0 is a random variable and $\alpha > 0$ is a number. Show that the following are equivalent:
 - (a) X has the Fréchet distribution function

$$\Phi_{\alpha}(x) = \begin{cases} 0 & \text{if } x \le 0\\ \exp(-x^{-\alpha}) & \text{if } x > 0 \end{cases}$$

(b) $\ln X^{\alpha}$ has the Gumbel distribution function

$$\Lambda(x) = \exp(-e^{-x})$$

(c) $-X^{-1}$ has the Weibull distribution function

$$\Psi_{\alpha}(x) = \begin{cases} \exp(-(-x)^{\alpha}) & \text{if } x \le 0\\ 1 & \text{if } x > 0 \end{cases}$$

- 16. Let X_1, X_2, \ldots be an independent but not identically distributed sequence of random variables, let X_k be exponential with parameter λ_k . Denote by $m_n = \min(X_1, \ldots, X_n)$ the minimum record up to n and let $m_{\infty} = \lim_{n \to \infty} m_n$ which exists since m_n is non-increasing.
 - (a) Show that if $\sum_{k=1}^{\infty} \lambda_k < \infty$, then with probability one, the minimum record is broken finitely many times and $m_{\infty} > 0$.
 - (b) Show that if $\sum_{k=1}^{\infty} \lambda_k = \infty$, then with probability one, the minimum record is broken infinitely many times and $m_{\infty} = 0$.

Hint: One can use the representation of X_k as the first point of a Poisson point process on \mathbb{R}_+ with intensity λ_k and the fact that the union of independent Poisson point processes with intensities λ_k for $k = 1, 2, \ldots$ is a Poisson point process with intensity $\sum_{k=1}^{\infty} \lambda_k$.

17. Let X_1, X_2, \ldots be an independent but not identically distributed sequence of random variables, let X_k be exponential with parameter λ_k . Denote by $M_n = \max(X_1, \ldots, X_n)$ the maximum record up to n and let $M_{\infty} = \lim_{n \to \infty} M_n$ which exists since M_n is non-decreasing.

(a) Show that for any constant K > 0 if

$$\sum_{n=1}^{\infty} e^{-\lambda_n K} = \infty,$$

then with probability one there are infinitely many indices n such that $X_n > K$. Further, for any K > 0 if

$$\sum_{n=1}^{\infty} e^{-\lambda_n K} < \infty,$$

then with probability one there are finitely many indices n such that $X_n > K$. Hint: Use the Borel-Cantelli lemmas.

- (b) Conclude that if $\sum_{n=1}^{\infty} e^{-\lambda_n K} = \infty$ for any K > 0, then with probability one, $M_{\infty} = \infty$ and the maximum record is broken infinitely many times. If $\sum_{n=1}^{\infty} e^{-\lambda_n K} < \infty$ for any K > 0, then with probability one, $M_{\infty} < \infty$ and the maximum record is broken finitely many times.
- (c) If there are $K_1 > K_2 > 0$ such that $\sum_{n=1}^{\infty} e^{-\lambda_n K_1} < \infty$ but $\sum_{n=1}^{\infty} e^{-\lambda_n K_2} = \infty$, then there is a critical K_c such that for smaller values of K the sum is infinite and for larger values of K the sum is finite. Show that in this case with probability one

$$\lim_{n\to\infty} \sup X_n = K_c.$$

(d) Suppose that there is a critical K_c as described above. Show that if

$$\sum_{n=1}^{\infty} e^{-\lambda_n K_c} = \infty,$$

then with probability one the maximum record is broken finitely many times.

Hint: The condition shows that there are infinitely many indices n such that $X_n > K_c$, but for any $\varepsilon > 0$, there are only finitely many with $X_n > K_c + \varepsilon$.

(e) Suppose that there is a critical K_c as described above. Show that if

$$\sum_{n=1}^{\infty} e^{-\lambda_n K_c} < \infty,$$

then with positive probability the maximum record is broken infinitely many times. Compute this probability.

Hint: Observe that the maximum record is broken infinitely many times if and only if $X_n < K_c$ for all indices n, since $\limsup_{n\to\infty} X_n = K_c$.

5