Extreme value theory midterm exam, 19 April 2016

1. (10 points) Let X have a symmetric stable law with index α. Show that $\mathbf{E}|X|^{p}<\infty$ for $p<\alpha$.
Hint: If $\varphi(t)=\mathbf{E}\left(e^{i t X}\right)$ denotes the characteristic function of X, then the following estimate can be used without proof for $u>0$:

$$
\mathbf{P}\left(|X|>\frac{2}{u}\right) \leq \frac{1}{u} \int_{-u}^{u}(1-\varphi(t)) \mathrm{d} t
$$

and the identity

$$
\mathbf{E}\left(|X|^{p}\right)=p \int_{0}^{\infty} t^{p-1} \mathbf{P}(|X|>t) \mathrm{d} t
$$

2. (10 points) Let X_{1}, X_{2}, \ldots be independent and identically distributed random variables with common distribution function $F(x)=\mathbf{P}\left(X_{i}<x\right)$. Suppose that the common distribution has a finite right endpoint, that is,

$$
x_{F}=\sup \{x \in \mathbb{R}: F(x)<1\}<\infty
$$

and that the right endpoint has a positive mass $\mathbf{P}\left(X_{i}=x_{F}\right)=\bar{F}\left(x_{F}\right)>0$. Let $M_{n}:=$ $\max _{1 \leq i \leq n} X_{i}$. Prove that for any sequence of reals $\left(u_{n}\right)$, if the sequence of probabilities $\mathbf{P}\left(M_{n}<u_{n}\right)$ converges, then the limit is either 0 or 1.
Hint: Use the proposition about Poisson approximation.
3. (10 points) Let X_{1}, X_{2}, \ldots be independent and identically distributed random variables with common distribution function $F(x)=\mathbf{P}\left(X_{i}<x\right)$. Let $M_{n}:=\max _{1 \leq i \leq n} X_{i}$. If $F(x)<1$ for all $x<\infty$ and $\lim _{x \rightarrow \infty} e^{\lambda x}(1-F(x))=b$ for some fixed constants $\lambda, b \in$ $(0, \infty)$ (that is, $1-F(x) \sim b e^{-\lambda x}$ as $\left.x \rightarrow \infty\right)$, then show that the distribution of $\lambda M_{n}-$ $\log (b n)$ converges weakly to the Gumbel distribution:

$$
\mathbf{P}\left(\lambda M_{n}-\log (b n)<x\right) \rightarrow \exp \left(-e^{-x}\right) .
$$

4. (10 points)
(a) Let X and Y be independent random variables with uniform distribution on $[0,1]$. What is the distribution of $Z=X+Y$?
(b) Suppose that Z_{1}, Z_{2}, \ldots is an independent and identically distributed sequence with the distribution of Z from the previous part. Denote $M_{n}=\max \left(Z_{1}, \ldots, Z_{n}\right)$. Which extreme value distribution is the limit of the rescaled sequence of M_{n} ? Under what normalization?
Hint: How does the tail probability behave at the right endpoint of the distribution?
5. (10 points) Suppose that $X>0$ is a random variable and $\alpha>0$ is a number. Show that X has the Weibull distribution function

$$
\Psi_{\alpha}(x)=\left\{\begin{array}{cl}
\exp \left(-(-x)^{\alpha}\right) & \text { if } x \leq 0 \\
1 & \text { if } x>0
\end{array}\right.
$$

if and only if $-\alpha \ln (-X)$ has the Gumbel distribution function $\Lambda(x)=\exp \left(-e^{-x}\right)$.
6. (15 points) Let X_{1}, X_{2}, \ldots be an independent but not identically distributed sequence of random variables, let X_{k} be exponential with parameter λ_{k}. Denote by $M_{n}=\max \left(X_{1}, \ldots, X_{n}\right)$ the maximum record up to n.
(a) Show that for any constant $K>0$ if

$$
\sum_{n=1}^{\infty} e^{-\lambda_{n} K}=\infty
$$

then with probability one there are infinitely many indices n such that $X_{n}>K$. Further, for any $K>0$ if

$$
\sum_{n=1}^{\infty} e^{-\lambda_{n} K}<\infty
$$

then with probability one there are finitely many indices n such that $X_{n}>K$. Hint: Use the Borel-Cantelli lemmas.
(b) Suppose that there is a critical K_{c} such that for $K>K_{c}, \sum_{n=1}^{\infty} e^{-\lambda_{n} K_{1}}<\infty$ but for $K<K_{c}, \sum_{n=1}^{\infty} e^{-\lambda_{n} K_{2}}=\infty$. Show that in this case with probability one

$$
\limsup _{n \rightarrow \infty} X_{n}=K_{c}
$$

(c) Let $\lambda_{n}=\ln n$. What is the value of K_{c} ? Show that with probability one the maximum record is broken finitely many times.
Hint: Check the finiteness of the sum $\sum_{n=1}^{\infty} e^{-\lambda_{n} K_{c}}$ and conclude that there are infinitely many indices n such that $X_{n}>K_{c}$, but for any $\varepsilon>0$, there are only finitely many with $X_{n}>K_{c}+\varepsilon$.

