Extreme value theory midterm exam, 26 March 2014

1. (a) What does it mean that the function $L(t)$ is slowly varying?
(b) Show that $L_{1}(t)=\log ^{2} t$ is a slowly varying function but $L_{2}(t)=e^{\sqrt{x}}$ is not.
2. (a) What is a max-stable law?
(b) How does the Fisher - Tippett theorem characterize the max-stable laws?
3. Suppose that X_{n} is a sequence of random variables and there are two sequences of positive reals a_{n} and α_{n} such that

$$
\frac{X_{n}}{a_{n}} \xlongequal{\mathrm{~d}} U \quad \text { and } \quad \frac{X_{n}}{\alpha_{n}} \xlongequal{\mathrm{~d}} V
$$

where U and V are non-degenerate random variables. What is the relation of U and V ?

Hint: A proposition which we have leart can be used without proof.
4. Let X be a random variable with Fréchet distribution, i.e. with distribution function

$$
\Phi_{\alpha}(x)=\left\{\begin{array}{cc}
0 & \text { if } x \leq 0 \\
\exp \left(-x^{-\alpha}\right) & \text { if } x>0
\end{array}\right.
$$

where $\alpha>0$. Prove that $\ln \left(X^{\alpha}\right)$ has Gumbel distribution, i.e. its distribution function is

$$
\Lambda(x)=\exp \left(-e^{-x}\right)
$$

5. For $f: \mathbb{R} \rightarrow \mathbb{R}$ functions, consider Cauchy's functional equation

$$
f(x+y)=f(x)+f(y) .
$$

Prove that the only solutions for the equation are the linear functions $f(x)=\alpha x$ for some $\alpha \in \mathbb{R}$, if we assume that f is bounded on the interval $[1,2]$.
6. Let X_{1}, X_{2}, \ldots be random variables defined on the probability space $(\Omega, \mathcal{A}, \mathbf{P})$ which have the same distribution function $F(x)$, but we do not assume anything about their dependence structure. Let $M_{n}:=\max _{1 \leq i \leq n} X_{i}$. Suppose that there is an $\alpha>0$ such that $\int_{-\infty}^{\infty}|x|^{\alpha} \mathrm{d} F(x)<\infty$, that is, $\mathbf{E}\left(\left|X_{i}\right|^{\alpha}\right)<\infty$. Prove that for any $\varepsilon>0$ and for fixed $\delta>0$,

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(n^{-(1 / \alpha+\varepsilon)}\left|M_{n}\right|>\delta\right)=0
$$

Hint: Use the following inequality

$$
\mathbf{P}\left(\max _{1 \leq i \leq n}\left|X_{i}\right|>\lambda\right)=\mathbf{P}\left(\cup_{i=1}^{n}\left\{\left|X_{i}\right|>\lambda\right\}\right) \leq \sum_{i=1}^{n} \mathbf{P}\left(\left|X_{i}\right|>\lambda\right)=n \mathbf{P}\left(\left|X_{i}\right|>\lambda\right)
$$

and Markov's inequality for the α th moment, that is,

$$
\mathbf{P}(|X|>\lambda) \leq \frac{\mathbf{E}\left(|X|^{\alpha}\right)}{\lambda^{\alpha}}
$$

7. Let X_{1}, X_{2}, \ldots be an iid sequence of Poisson random variables with parameter $\lambda>0$, that is,

$$
\mathbf{P}(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}
$$

for $k=0,1,2, \ldots$ and let $M_{n}:=\max _{1 \leq i \leq n} X_{i}$. Show that there is no such normalization under which the sequence of maxima M_{n} has a non-degenerate limit law.

Hint: Show that the necessary condition

$$
\lim _{x \uparrow x_{F}} \frac{\bar{F}(x+)}{\bar{F}(x)}=1
$$

fails to hold along a sequence of integers where $\bar{F}(x)=1-F(x)$ is the tail probability function. More precisely $\bar{F}(k+1) / \bar{F}(k)$ converge to 0 for the integers $k \rightarrow \infty$.
8. Let X_{1}, X_{2}, \ldots be i.i.d. uniform random variables on $[0,1]$. Prove a limit theorem for their maximum $M_{n}:=\max _{1 \leq i \leq n} X_{i}$.
Hint: The following question helps to guess the correct rescaling of M_{n}. How does the tail probability behave at the right endpoint of the distribution?
9. Suppose that $\left(u_{n}\right)$ is a sequence of real numbers such that $n\left(1-F\left(u_{n}\right)\right) \rightarrow \tau \in(0, \infty)$. Let X_{1}, X_{2}, \ldots be an i.i.d. sequence with distribution function F and let $M_{n}^{(2)}$ be the second largest value in the set $\left\{X_{1}, \ldots, X_{n}\right\}$. What is $\lim _{n \rightarrow \infty} \mathbf{P}\left(M_{n}^{(2)}<u_{n}\right)$?
Hint: Let $S_{n}=\sum_{k=1}^{n} \mathbb{1}\left(X_{k} \geq u_{n}\right)$ and observe the equality of events $\left\{M^{(2)}<u_{n}\right\}=$ $\left\{S_{n}<2\right\}$.

