Exercises

Extreme value theory

1. Show that $L(t)=\log t$ is a slowly varying function but t^{ϵ} is not if $\epsilon \neq 0$.
2. If the random variable X has distribution F with finite variance, then show that the condition

$$
\lim _{x \rightarrow \infty} \frac{x^{2} \mathbf{P}(|X|>x)}{\int_{|y| \leq x} y^{2} \mathrm{~d} F(y)}=0
$$

automatically holds.
Hint: To obtain a contradiction, suppose that $x^{2} \mathbf{P}(|X|>x)$ does not converge to 0 , i.e. along a sequence x_{n}, it is at least ε. If this happens, then one can give an infinite lower bound on the second moment of X.
3. Let W_{1} and W_{2} be independent standard normal random variables.
(a) Check that $1 / W_{2}^{2}$ has the Lévy distribution, that is, the stable law with index $\alpha=1 / 2$ and $\kappa=1$, i.e. it has density

$$
\frac{1}{\sqrt{2 \pi y^{3}}} \exp \left(-\frac{1}{2 y}\right) \quad \text { for } y \geq 0
$$

(b) Prove that W_{1} / W_{2} has Cauchy distribution.
4. Let X has a symmetric stable law with index α. Show that $\mathbf{E}|X|^{p}<\infty$ for $p<\alpha$. Hint: If $\varphi(t)=\mathbf{E}\left(e^{i t X}\right)$ denotes the characteristic function of X, then the following estimate can be used without proof for $u>0$:

$$
\mathbf{P}\left(|X|>\frac{2}{u}\right) \leq \frac{1}{u} \int_{-u}^{u}(1-\varphi(t)) \mathrm{d} t
$$

and the identity

$$
\mathbf{E}\left(|X|^{p}\right)=\alpha \int_{0}^{\infty} t^{p-1} \mathbf{P}(|X|>t) \mathrm{d} t
$$

5. For $f: \mathbb{R} \rightarrow \mathbb{R}$ functions, consider Cauchy's functional equation

$$
f(x+y)=f(x)+f(y) .
$$

Prove that the only solutions for the equation are the linear functions $f(x)=\alpha x$ for some $\alpha \in \mathbb{R}$, if we assume that f is
(a) continuous;
(b) continuous at one point;
(c) monotonic on any interval;
(d) bounded on any interval;
(e) measurable.

Hint: Luzin's theorem ensures that by the measurability of f there is a subset $F \subseteq[0,1]$ with Lebesgue measure $2 / 3$ such that f is uniformly continuous on F. Use this to conclude that the function f is bounded on an interval $(0, \delta)$ for some small $\delta>0$.
6. Let X_{1}, X_{2}, \ldots be random variables defined on the probability space $(\Omega, \mathcal{A}, \mathbf{P})$ which have the same distribution function $F(x)$, but we do not assume anything about their dependence structure. Let $M_{n}:=\max _{1 \leq i \leq n}\left|X_{i}\right|$.
(a) Suppose that there is an $\alpha>0$ such that $\int_{-\infty}^{\infty}|x|^{\alpha} \mathrm{d} F(x)<\infty$, that is, $\mathbf{E}\left(\left|X_{i}\right|^{\alpha}\right)<\infty$. Prove that for any $\varepsilon>0$ and for fixed $\delta>0$,

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(n^{-(1 / \alpha+\varepsilon)}\left|M_{n}\right|>\delta\right)=0
$$

(b) Suppose that there is an $s>0$ such that $\int_{-\infty}^{\infty} \exp (s|x|) \mathrm{d} F(x)<\infty$, that is, $\mathbf{E}\left(\exp \left(s\left|X_{i}\right|\right)\right)<\infty$. Prove that for any sequence b_{n} that goes to ∞ and for fixed $\delta>0$,

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(\left(b_{n} \log n\right)^{-1}\left|M_{n}\right|>\delta\right)=0
$$

Hint: Use the following inequality

$$
\mathbf{P}\left(\max _{1 \leq i \leq n}\left|X_{i}\right|>\lambda\right)=\mathbf{P}\left(\cup_{i=1}^{n}\left\{\left|X_{i}\right|>\lambda\right\}\right) \leq \sum_{i=1}^{n} \mathbf{P}\left(\left|X_{i}\right|>\lambda\right)=n \mathbf{P}\left(\left|X_{i}\right|>\lambda\right)
$$

and a Markov type inequality.
7. Let X_{1}, X_{2}, \ldots be independent and identically distributed random variables with common distribution function $F(x)=\mathbf{P}\left(X_{i}<x\right)$. Let $M_{n}:=\max _{1 \leq i \leq n} X_{i}$. If $F(x)<1$ for all $x<\infty$ and $\lim _{x \rightarrow \infty} x^{\alpha}(1-F(x))=b$ for some fixed constants $\alpha, b \in(0, \infty)$ (that is, $1-F(x) \sim b x^{-\alpha}$ as $x \rightarrow \infty$), then show that the distribution of $(b n)^{-1 / \alpha} M_{n}$ converges weakly to the Fréchet distribution:

$$
\mathbf{P}\left((b n)^{-1 / \alpha} M_{n}<x\right) \rightarrow \mathbb{1}(x>0) \exp \left(-x^{-\alpha}\right) .
$$

8. Let X_{1}, X_{2}, \ldots be independent and identically distributed random variables with common distribution function $F(x)=\mathbf{P}\left(X_{i}<x\right)$. Let $M_{n}:=\max _{1 \leq i \leq n} X_{i}$. If $F(x)<1$ for all $x<\infty$ and $\lim _{x \rightarrow \infty} e^{\lambda x}(1-F(x))=b$ for some fixed constants $\lambda, b \in(0, \infty)$ (that is, $1-F(x) \sim b e^{-\lambda x}$ as $\left.x \rightarrow \infty\right)$, then show that the distribution of $\lambda M_{n}-\log (b n)$ converges weakly to the Gumbel distribution:

$$
\mathbf{P}\left(\lambda M_{n}-\log (b n)<x\right) \rightarrow \exp \left(-e^{-x}\right)
$$

9. Let X_{1}, X_{2}, \ldots be independent and identically distributed random variables with common distribution function $F(x)=\mathbf{P}\left(X_{i}<x\right)$. Let $M_{n}:=\max _{1 \leq i \leq n} X_{i}$. If $F\left(x_{0}\right)=1$ and $F(x)<1$ for all $x<x_{0}$ and $\lim _{x \rightarrow x_{0}}\left(x_{0}-x\right)^{-\alpha}(1-F(x))=b$ for some fixed constants $\alpha, b \in(0, \infty)$ (that is, $1-F(x) \sim b\left(x_{0}-x\right)^{\alpha}$ as $\left.x \rightarrow x_{0}\right)$,
then show that the distribution of $(b n)^{1 / \alpha}\left(M_{n}-x_{0}\right)$ converges weakly to the Weibull distribution:

$$
\mathbf{P}\left((b n)^{1 / \alpha}\left(M_{n}-x_{0}\right)<x\right) \rightarrow \mathbb{1}(x<0) \exp \left(-(-x)^{\alpha}\right) .
$$

10. Let X_{1}, X_{2}, \ldots be an iid sequence of Poisson random variables with parameter $\lambda>0$, that is,

$$
\mathbf{P}(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}
$$

for $k=0,1,2, \ldots$ and let $M_{n}:=\max _{1 \leq i \leq n} X_{i}$. Show that there is no such normalization under which the sequence of maxima M_{n} has a non-degenerate limit law.
Hint: Show that the necessary condition

$$
\lim _{x \uparrow x_{F}} \frac{\bar{F}(x+)}{\bar{F}(x)}=1
$$

fails to hold along a sequence of integers where $\bar{F}(x)=1-F(x)$ is the tail probability function. More precisely $\bar{F}(k+1) / \bar{F}(k)$ converge to 0 for the integers $k \rightarrow \infty$.
11. Let X_{1}, X_{2}, \ldots be an iid sequence of negative binomial random variables with parameters $p \in(0,1)$ and $m \in \mathbb{N}$, that is,

$$
\mathbf{P}(X=k)=\binom{k+m-1}{k} p^{m}(1-p)^{k}
$$

for $k=0,1,2, \ldots$ and let $M_{n}:=\max _{1 \leq i \leq n} X_{i}$. Show that there is no such normalization under which the sequence of maxima M_{n} has a non-degenerate limit law.
Hint: Show that the necessary condition

$$
\lim _{x \uparrow x_{F}} \frac{\bar{F}(x+)}{\bar{F}(x)}=1
$$

fails to hold along a sequence of integers where $\bar{F}(x)=1-F(x)$ is the tail probability function. More precisely $\bar{F}(k+1) / \bar{F}(k)$ converges to $1-p$ for the integers $k \rightarrow \infty$. To this end, show and use the asymptotic identity

$$
\mathbf{P}(X=k)=\frac{k^{m-1}}{(m-1)!} p^{m}(1-p)^{k}(1+o(1))
$$

as $k \rightarrow \infty$.
12. Suppose that $X>0$ is a random variable and $\alpha>0$ is a number. Show that the following are equivalent:
(a) X has the Fréchet distribution function

$$
\Phi_{\alpha}(x)=\left\{\begin{array}{cc}
0 & \text { if } x \leq 0 \\
\exp \left(-x^{-\alpha}\right) & \text { if } x>0
\end{array}\right.
$$

(b) $\ln X^{\alpha}$ has the Gumbel distribution function

$$
\Lambda(x)=\exp \left(-e^{-x}\right)
$$

(c) $-X^{-1}$ has the Weibull distribution function

$$
\Psi_{\alpha}(x)=\left\{\begin{array}{cl}
\exp \left(-(-x)^{\alpha}\right) & \text { if } x \leq 0 \\
1 & \text { if } x>0
\end{array}\right.
$$

