Second Repeated Midterm Test (2016 12 07) - SOLUTIONS

1. The temperature at noon in January on a little island follows normal distribution with an expected value $7{ }^{\circ} \mathrm{C}$ and standard deviation $4^{\circ} \mathrm{C}$.
(a) (2 points) What is the probability that the temperature is above $10^{\circ} \mathrm{C}$?

Solution:

$$
\mathrm{P}(X>10)=1-\Phi\left(\frac{10-7}{4}\right)=1-\Phi(0.75)=0.225
$$

(b) (3 points) What is the probability that the temperature is above $10^{\circ} \mathrm{C}$ on condition that it is above the average temperature?

$$
\mathrm{P}(X>10 \mid X>7)=\frac{\mathrm{P}(X>10)}{\mathrm{P}(X>7)}=\frac{0.225}{0.5}=0.45
$$

2. The temperature at noon in January on a little island follows normal distribution with an expected value $7{ }^{\circ} \mathrm{C}$ and standard deviation $4^{\circ} \mathrm{C}$. The temperature at midnight follows normal distribution with an expected value $5^{\circ} \mathrm{C}$ and standard deviation $2^{\circ} \mathrm{C}$. The correlation coefficient is 0.6 .
(a) (2 points) What is the expected temperature at noon if the midnight temperature is $4^{\circ} \mathrm{C}$?

Solution: $X=$ temperature at noon, $Y=$ temperature at midnight. Parameters:

$$
\begin{gathered}
\mu_{1}=7, \quad \sigma_{1}=4, \quad \mu_{2}=5, \quad \sigma_{2}=2, \quad r=0.6 \\
\mathrm{E}(X \mid Y=y)=\mu_{1}+r \cdot \frac{\sigma_{1}}{\sigma_{2}} \cdot\left(y-\mu_{2}\right) \\
\left.\mathrm{E}(X \mid Y=4)=7+0.6 \cdot \frac{4}{2} \cdot(4-5)\right)=7-1.2=5.8
\end{gathered}
$$

(b) (3 points) What is the probability that temperature at noon is above $10^{\circ} \mathrm{C}$ if the midnight temperature is $4^{\circ} \mathrm{C}$?

Solution:

$$
\begin{gathered}
\mathrm{SD}(X \mid Y=y)=\sigma_{1} \cdot \sqrt{1-r^{2}} \\
\mathrm{SD}(X \mid Y=4)=4 \cdot \sqrt{1-0.6^{2}}=4 \cdot \sqrt{1-0.36}=4 \cdot \sqrt{0.64}=4 \cdot 0.8=3.2 \\
\mathrm{P}(X>10 \mid Y=4)=1-\Phi\left(\frac{0-5.8}{3.2}\right)=1-\Phi(1.31)=0.09
\end{gathered}
$$

3. X follows the distribution which has a distribution function $F_{1}(x)=1-\frac{1}{x^{4}} \quad(x>1)$. If $X=x$, then Y follows uniform distribution between 0 and $\frac{1}{x}$.
(a) (1 point) Determine the density function of X.

Solution:

$$
f_{1}(x)=F_{1}^{\prime}(x)=4 x^{-5} \quad(x>1)
$$

(b) (1 point) Draw the set of the possible values of (X, Y).

$$
\left\{(x, y): x>1, \quad 0<y<\frac{1}{x}\right\}
$$

(c) (2 points) Determine the density function of (X, Y).

$$
\begin{gathered}
f_{2 \mid 1}(y \mid x)=\frac{1}{\left(\frac{1}{x}\right)}=x \quad\left(0<y<\frac{1}{x}\right) \\
f(x, y)=f_{1}(x) \cdot f_{2 \mid 1}(y \mid x)=4 x^{-5} \cdot x=4 x^{-4} \quad\left(x>1 \quad 0<y<\frac{1}{x}\right)
\end{gathered}
$$

(d) (1 point) Determine the density function of Y.

Solution:

$$
f_{2}(y)=\int_{-\infty}^{\infty} f(x, y) d x=\int_{1}^{\frac{1}{y}} 4 x^{-4} d x=4\left[\frac{x^{-3}}{-3}\right]_{1}^{\frac{1}{y}}=\frac{4}{3}-\frac{4}{3} y \quad(0<y<1)
$$

4. (3+2 or $2+3$ points) Give the meaning of the the standard deviation of a continuous random variable
(a) by a correct(!) mathematical formula,

$$
\sqrt{\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x} \quad \text { where } \quad \mu=\int_{-\infty}^{\infty} x f(x) d x
$$

or

$$
\mathrm{SD}(X)=\sqrt{\mathrm{E}\left([X-\mathrm{E}(X)]^{2}\right)}
$$

(b) in words, based on experimental results.

Solution: If we make a large number of experiments, then the standard deviation of the experimental results is close to the theoretical standard deviation,

