First Repeated Midterm Test (2016 12 07) - SOLUTIONS

1. Assume that, in a country, 0.02 part of cats are infected by a certain illness, and 0.98 part of them are healthy. Assume also that if a cat is infected by the illness, then it will be correctly diagnosed sick with a probability 0.85 , and it will be mistakenly diagnosed healthy with a probability 0.15 . Moreover, if a cat is healthy, then it will be correctly diagnosed healthy with a probability 0.75 , and it will be mistakenly diagnosed sick with a probability 0.25 ,
(a) (3 points) A cat is examined, and the test says the cat is sick. Knowing this fact what is the probability that this cat is really sick?

Solution:

$$
\begin{gathered}
\mathrm{P}(\text { sick } \mid \text { diagnosed sick })=\frac{\mathrm{P}(\text { sick AND diagnosed sick })}{\mathrm{P}(\text { diagnosed sick })}= \\
=\frac{\mathrm{P}(\text { sick AND diagnosed sick })}{\mathrm{P}(\text { sick AND diagnosed sick })+\mathrm{P}(\text { healthy AND diagnosed sick })}= \\
=\frac{\mathrm{P}(\text { sick }) \mathrm{P}(\text { diagnosed sick । sick })}{\mathrm{P}(\text { sick }) \cdot \mathrm{P}(\text { diagnosed sick । sick })+\mathrm{P}(\text { healthy }) \cdot \mathrm{P}(\text { diagnosed sick । healthy })}= \\
=\frac{(0.02)(0.85)}{(0.02)(0.85)+(0.98)(0.25)} \quad(=0.065)
\end{gathered}
$$

(b) (2 points) Now imagine that a cat is examined twice. The two examinations are independent. Both tests say the cat is sick. Knowing this fact what is the probability that this cat is really sick?

Solution:

$$
\begin{gathered}
\mathrm{P}(\text { sick } \mid \text { twice diagnosed sick })=\frac{\mathrm{P}(\text { sick AND twice diagnosed sick })}{\mathrm{P}(\text { twice diagnosed sick })}= \\
=\frac{\mathrm{P}(\text { sick AND twice diagnosed sick })}{\mathrm{P}(\text { sick AND twice diagnosed sick })+\mathrm{P}(\text { healthy AND twice diagnosed sick })}= \\
=\frac{\mathrm{P}(\text { sick }) \mathrm{P}(\text { twice diagnosed sick } \mid \text { sick })}{\mathrm{P}(\text { sick }) \cdot \mathrm{P}(\text { twice diagnosed sick } \mid \text { sick })+\mathrm{P}(\text { healthy }) \cdot \mathrm{P}(\text { twice diagnosed sick | healthy })}=
\end{gathered}
$$

$$
=\frac{(0.02)(0.85)^{2}}{(0.02)(0.85)^{2}+(0.98)(0.25)^{2}} \quad(=0.19)
$$

2. (5 points) Assume that there are 250 seats on an air-plain, and 255 tickets are sold. Let us assume that each passenger may miss the flight independently of the others with a probability $p=0.02$. How much is the probability that at least 2 persons will not have a seat on the air-plain?
Solution:

$$
\begin{aligned}
& \mathrm{P}(\text { more than } 251 \text { passengers come })=\sum_{k=252}^{255} \mathrm{P}(k \text { passengers come })= \\
& =\sum_{k=252}^{255}\binom{255}{k}(0.98)^{k}(0.02)^{255-k} \quad(=0.0 .248)
\end{aligned}
$$

3. X has an exponential distribution with expected value 5 . Find the probabilities:
(a) (1 point) $P(X<3)$

Solution:

$$
\mathrm{P}(X<3)=F(3)=1-\mathrm{e}^{\left(-\frac{1}{5} \cdot 3\right)}=1-\mathrm{e}^{\left(-\frac{3}{5}\right)} \quad(=0.451)
$$

(b) (2 points) $P(X<3 \mid X>2)$

Solution:

$$
\begin{gathered}
\mathrm{P}(X<3 \mid X>2)=\frac{\mathrm{P}(X<3 \text { AND } X>2)}{\mathrm{P}(X>2)}=\frac{\mathrm{P}(2<X<3)}{\mathrm{P}(X>2)}= \\
=\frac{F(3)-F(2)}{1-F(2)}=\frac{\left(1-\mathrm{e}^{\left(-\frac{1}{5} \cdot 3\right)}\right)-\left(1-\mathrm{e}^{\left(-\frac{1}{5} \cdot 2\right)}\right)}{1-\left(1-\mathrm{e}^{\left(-\frac{1}{5} \cdot 2\right)}\right)}=\frac{\mathrm{e}^{\left(-\frac{1}{5} \cdot 2\right)}-\mathrm{e}^{\left(-\frac{1}{5} \cdot 3\right)}}{\mathrm{e}^{\left(-\frac{1}{5} \cdot 2\right)}} \quad(=0.181)
\end{gathered}
$$

(c) (2 points) $P(X<2 \mid X<3)$

Solution:

$$
\mathrm{P}(X<2 \mid X<3)=\frac{\mathrm{P}(X<2)}{\mathrm{P}(X<3)}=\frac{1-\mathrm{e}^{\left(-\frac{1}{5} \cdot 2\right)}}{\left.1-\mathrm{e}^{\left(-\frac{1}{5} \cdot 3\right.}\right)}=\quad(=0.731)
$$

4. $(3+2$ or $2+3$ points $)$ Give the meaning of the the expected value of a discrete random variable
(a) by a correct(!) mathematical formula,

Solution:

$$
\sum_{x} x p(x)
$$

(b) in words, based on experimental results.

Solution: If the number of experiments is large, then the average of the experimental results is close to the expected value.

