Second Midterm Test (2016 11 26) - SOLUTIONS

1. The temperature at noon in early December on a norwegian island follows normal distribution with an expected value $4.5{ }^{\circ} \mathrm{C}$ and standard deviation $2{ }^{\circ} \mathrm{C}$.
(a) (2 points) What is the probability that temperature is below $0^{\circ} \mathrm{C}$?

Solution:

$$
\mathrm{P}(X<0)=\Phi\left(\frac{0-4.5}{2}\right)=\Phi(-2.25)=1-\Phi(2.25)=1-0.99=0.01
$$

(b) (3 points) What is the probability that temperature is below $0^{\circ} \mathrm{C}$ on condition that it is below the average temperature?

Solution:

$$
\mathrm{P}(X<0 \mid X<4.5)=\frac{\mathrm{P}(X<0)}{\mathrm{P}(X<4.5)}=\frac{0.01}{0.5}=0.02
$$

2. The temperature at noon in early December on a norwegian island follows normal distribution with an expected value $4.5^{\circ} \mathrm{C}$ and standard deviation $2^{\circ} \mathrm{C}$. The temperature at midnight follows normal distribution with an expected value $-1.5{ }^{\circ} \mathrm{C}$ and standard deviation $1^{\circ} \mathrm{C}$. The correlation coefficient is 0.8 .
(a) (2 points) What is the expected temperature at noon if the midnight temperature is $-2.5^{\circ} \mathrm{C}$?

Solution: $X=$ temperature at noon, $Y=$ temperature at midnight. Parameters:

$$
\begin{gathered}
\mu_{1}=4.5, \quad \sigma_{1}=2, \quad \mu_{2}=-1.5, \quad \sigma_{2}=1, \quad r=0.8 \\
\mathrm{E}(X \mid Y=y)=\mu_{1}+r \cdot \frac{\sigma_{1}}{\sigma_{2}} \cdot\left(y-\mu_{2}\right) \\
\mathrm{E}(X \mid Y=-2.5)=4.5+0.8 \cdot \frac{2}{1} \cdot(-2.5-(-1.5))=4.5-1.6=2.9
\end{gathered}
$$

(b) (3 points) What is the probability that temperature at noon is below $0^{\circ} \mathrm{C}$ if the midnight temperature is $-2.5^{\circ} \mathrm{C}$?

Solution:

$$
\begin{gathered}
\mathrm{SD}(X \mid Y=y)=\sigma_{1} \cdot \sqrt{1-r^{2}} \\
\mathrm{SD}(X \mid Y=-2.5)=2 \cdot \sqrt{1-0.8^{2}}=2 \cdot \sqrt{1-0.64}=2 \cdot \sqrt{0.36}=2 \cdot 0.6=1.2 \\
\mathrm{P}(X<0 \mid Y=-2.5)=\Phi\left(\frac{0-2.9}{1.2}\right)=\Phi(-2.42)=1-\Phi(2.42)=1-0.99=0.01
\end{gathered}
$$

3. X follows the distribution which has a distribution function $F_{1}(x)=x^{4} \quad(0<x<1)$. If $X=x$, then Y follows uniform distribution between 0 and x^{2}.
(a) (1 point) Determine the density function of X.

Solution:

$$
f_{1}(x)=F_{1}^{\prime}(x)=4 x^{3} \quad(0<x<1)
$$

(b) (1 point) Draw the set of the possible values of (X, Y).

Solution: The set of the possible values of (X, Y) is the region with the boundary consisting of the following three parts:

$$
\begin{gathered}
\{(x, y): 0<x<1, \quad y=0\} \\
\left\{(x, y): \quad 0<x<1, y=x^{2}\right\} \\
\{(x, y): x=1, \quad 0<y<1\}
\end{gathered}
$$

(c) (2 points) Determine the density function of (X, Y).

Solution:

$$
\begin{gathered}
f_{2 \mid 1}(y \mid x)=\frac{1}{x^{2}} \quad\left(0<y<x^{2}\right) \\
f(x, y)=f_{1}(x) \cdot f_{2 \mid 1}(y \mid x)=4 x^{3} \cdot \frac{1}{x^{2}}=4 x \quad\left(0<x<1, \quad 0<y<x^{2}\right)
\end{gathered}
$$

(d) (1 point) Determine the density function of Y.

Solution:

$$
f_{2}(y)=\int_{-\infty}^{\infty} f(x, y) d x=\int_{\sqrt{y}}^{1} 4 x d x=\left[x^{2}\right]_{\sqrt{y}}^{1}=2-2 y \quad(0<y<1)
$$

4. ($3+2$ or $2+3$ points) Assume that the value of the distribution function of a random variable X at 4.5 is 0.3 .
(a) Explain briefly - in words - the meaning of this fact in terms of the notion of probability.

Solution: It means that the probability of the event that the random variable is less than 4.5 is equal to 0.3 .
(b) Assume that 1000 experiments are made for the random variable X. What does the above fact mean for the experimental results?

Solution: It means that approximately 300 experimental results are less than 4.5 , and approximately 700 experimental results are greater than 4.5 .

