First Midterm Test (2016 10 26) - SOLUTIONS

1. Assume that, in a country, 0.01 part of dogs are infected by a certain illness, and 0.99 part of them are healthy. Assume also that if a dog is infected by the illness, then it will be correctly diagnosed sick with a probability 0.8 , and it will be mistakenly diagnosed healthy with a probability 0.2 . Moreover, if a dog is healthy, then it will be correctly diagnosed healthy with a probability 0.7 . and it will be mistakenly diagnosed sick with a probability 0.3 , Now imagine that a dog is examined, and the test says the dog is sick. Knowing this fact what is the probability that this dog is really sick?

Solution:

$$
\begin{gathered}
\mathrm{P}(\text { sick } \mid \text { diagnosed sick })=\frac{\mathrm{P}(\text { sick AND diagnosed sick })}{\mathrm{P}(\text { diagnosed sick })}= \\
=\frac{\mathrm{P}(\text { sick AND diagnosed sick })}{\mathrm{P}(\text { sick AND diagnosed sick })+\mathrm{P}(\text { healthy AND diagnosed sick })}= \\
=\frac{\mathrm{P}(\text { sick }) \mathrm{P}(\text { diagnosed sick । sick })}{\mathrm{P}(\text { sick }) \cdot \mathrm{P}(\text { diagnosed sick I sick })+\mathrm{P}(\text { healthy }) \cdot \mathrm{P}(\text { diagnosed sick I healthy })}= \\
=\frac{(0.01)(0.8)}{(0.01)(0.8)+(0.99)(0.3)} \quad(=0.026)
\end{gathered}
$$

2. Assume that there are 50 seats in a restaurant, and 55 guests are invited for a dinner. Let us assume that each guest may miss the dinner independently of the others with a probability $p=0.07$. How much is the probability that more than 50 people come to the dinner?

Solution:

$$
\mathrm{P}(\text { more than } 50 \text { guests come })=\sum_{k=51}^{55} \mathrm{P}(k \text { guests come })=\sum_{k=51}^{55}\binom{55}{k}(0.93)^{k}(0.07)^{55-k} \quad(=0.66)
$$

3. X has an exponential distribution with parameter $\frac{1}{4}$. Find the probabilities:
(a) $\mathrm{P}(X<3.5)$;
(b) $\mathrm{P}(X<3.5 \mid X>2.5)$;

Solution:

(a)

$$
\mathrm{P}(X<3.5)=F(3.5)=1-\mathrm{e}^{\left(-\frac{1}{4} \cdot 3.5\right)}=1-\mathrm{e}^{\left(-\frac{7}{8}\right)} \quad(=0.58)
$$

(b)

$$
\begin{gathered}
\mathrm{P}(X<3.5 \mid X>2.5)=\frac{\mathrm{P}(X<3.5 \text { AND } X>2.5)}{\mathrm{P}(X>2.5)}=\frac{\mathrm{P}(2.5<X<3.5)}{\mathrm{P}(X>2.5)}= \\
=\frac{F(3.5)-F(2.5)}{1-F(2.5)}=\frac{\left(1-\mathrm{e}^{\left(-\frac{1}{4} \cdot 3.5\right)}\right)-\left(1-\mathrm{e}^{\left(-\frac{1}{4} \cdot 2.5\right)}\right)}{1-\left(1-\mathrm{e}^{\left(-\frac{1}{4} \cdot 2.5\right)}\right)}=\frac{\mathrm{e}^{\left(-\frac{1}{4} \cdot 2.5\right)}-\mathrm{e}^{\left(-\frac{1}{4} \cdot 3.5\right)}}{\mathrm{e}^{\left(-\frac{1}{4} \cdot 2.5\right)}} \quad(=0.06)
\end{gathered}
$$

4. Explain the meaning of the the memoryless property
(a) by a mathematical formula
(b) in words. (You may tell a real life example.)

Solution:

(a)

$$
\mathrm{P}(X>s+t \mid X>t)=\mathrm{P}(X>s) \text { for all } s, t \geq 0
$$

(b) The fact that life-times of the glasses at a restaurant satisfy the memoryless property means that the future life-time of a glass does not depend on its age.

