## Exam 20170109 , SOLUTIONS

1. In a box there are 5 red and 3 blue balls. You pick balls, one after the other without replacement. You stop picking when two red has already been drawn. Let $X$ mean the number of draws.
(a) Set up a table for the distribution of $X$.

Solution: $X$ can take on values $2,3,4,5$. The probability mass function of $X$ is ( $r=$ red, $b=$ blue):

$$
\begin{aligned}
& p(2)=\mathbb{P}(r r)=\frac{5}{8} \frac{4}{7}=\frac{5}{14} \\
& p(3)=\mathbb{P}(r b r)+\mathbb{P}(b r r)=\left(\frac{5}{8} \frac{3}{7}+\frac{3}{8} \frac{5}{7}\right) \frac{4}{6}=2 \cdot \frac{5 \cdot 3}{8 \cdot 7} \cdot \frac{2}{3}=\frac{5}{14} \\
& p(4)=\mathbb{P}(r b b r)+\mathbb{P}(b r b r)+\mathbb{P}(b b r r)=3 \cdot \frac{5 \cdot 3 \cdot 2}{8 \cdot 7 \cdot 6} \cdot \frac{4}{5}=\frac{3}{14} \\
& p(5)=\mathbb{P}(r b b b r)+\mathbb{P}(b r b b r)+\mathbb{P}(b b r b r)+\mathbb{P}(b b b r r)=4 \cdot \frac{5 \cdot 3 \cdot 2 \cdot 1}{8 \cdot 7 \cdot 6 \cdot 5} \cdot \frac{4}{4}=\frac{1}{14} .
\end{aligned}
$$

(b) If you made 1000 experiments, approximately how much would be the average of the number of draws?

Solution: Since 1000 is „large", the average of the number of draws is apprioximately the expectation

$$
\mathbb{E}(X)=2 \cdot \frac{5}{14}+3 \cdot \frac{5}{14}+4 \cdot \frac{3}{14}+5 \cdot \frac{1}{14}=3
$$

(5 points for each part)
2. The life-time of an object has a uniform distribution between 0 and $B$. Approximately only $25 \%$ of such objects live more than 6 years.
(a) How much is the expected value of these objects?

Solution: $f(x)=\frac{1}{B}$ if $0<x<B$. So

$$
\mathbb{P}(X>6)=\int_{6}^{B} \frac{1}{B} d x=\frac{B-6}{B}=0.25=\frac{1}{4} \Longrightarrow B=8 \Longrightarrow \mathbb{E}(X)=\frac{0+B}{2}=4
$$

(b) What is the probability that such an object lives more than 6 years on condition that it lives more than 5 years? Solution: $\mathbb{P}(X>6 \mid X>5)=\frac{\mathbb{P}(X>6)}{\mathbb{P}(X>5)}=\frac{2 / 8}{3 / 8}=\frac{2}{3}$.
(5 points for each part)
3. The height of a randomly chosen man follows the normal distribution with an expected value of 180 cms and a standard deviation of 10 cms . The height of a randomly chosen woman follows the normal distribution with an expected value of 170 cms and a standard deviation of 5 cms . In a large group of people $25 \%$ are men, $75 \%$ are women. You choose persons one after the other until a the person is higher than 190 cms , and then you stop choosing.
(a) What is the probability that you make exactly 4 choices?

Solution:
4. The hight of a randomly chosen woman is $X \sim \mathcal{N}(170,5)$, while the hight of a randomly selected man is $Y \sim \mathcal{N}(180,10)$. Therefore,

$$
\begin{aligned}
& m=\mathbb{P}(Y>190)=1-\Phi\left(\frac{190-180}{10}\right)=1-\Phi(1) \approx 0.16 \\
& w=\mathbb{P}(X>190)=1-\Phi\left(\frac{190-170}{5}\right)=1-\Phi(4) \approx 0.00
\end{aligned}
$$

At one choice, the probability, that the randomly selected person is taller than 190 cm 's (call it event $A$ ) is

$$
p=\mathbb{P}(A)=m \cdot 0.25+w \cdot 0.75 \approx 0.04,
$$

and the probability, that he/she is shorter than 190 cm 's is $1-p \approx 0.96$. (Note that is also equal to $(1-$ $m) \cdot 0.25+(1-w) \cdot 0.75$.) So the probability that the above event $A$ happens exactly at the 4th choice is
$(1-p)^{3} p \approx 0.96^{3} \cdot 0.04$. (Note that because we select from a large group of people, it can be considered with replacement, and use the formula for the geometric distribution.)
(b) What is the probability that the person is a woman on condition that you make exactly 4 choices?

Solution: Denote by $W$ the event that the so (fourthly) selected person (who is the first to be taller than 190 cm 's) is a woman. By the Bayes theorem,

$$
\mathbb{P}(W \mid A)=\frac{\mathbb{P}(A, W)}{\mathbb{P}(A)}=\frac{(1-p)^{3} w}{\mathbb{P}(A)} \approx 0
$$

as the numerator $<w \approx 0$, but you can also feel it. (5 points for each part)
5. $X$ is a random variable with values between $-\infty$ and 0 . The density function of $X$ is $f(x)=3 \mathrm{e}^{3 x}$ on the interval $-\infty ; 0$.
(a) What is the probability that $-2.5<X<-0.5$ ?

Solution: $\mathbb{P}(-2.5<X<-0.5)=\int_{-2.5}^{-0.5} 3 e^{3 x} d x=e^{-1.5}-e^{-7.5}$. Alternative solution: $F(x)=e^{3 x}$ if $x<0$ and 1, otherwise. Therefore, $\mathbb{P}(-2.5<X<-0.5)=F(-0.5)-F(-2.5)=e^{-1.5}-e^{-7.5}$.
(b) Determine the expected value of $X$.

Solution: $\mathbb{E}(X)=\int_{-\infty}^{0} x \cdot 3 e^{3 x} d x=-\frac{1}{3}$ with integration by parts. (5 points for each part)
6. $(X, Y)$ follows the distribution which has the density function

$$
f(x, y)=\frac{2 x}{y} \quad\left(0<x<1, x<y<\frac{1}{x}\right)
$$

(a) Find the density function of $X$.

Solution: $f_{1}(x)=\int_{x}^{\frac{1}{x}} \frac{2 x}{y} d y=2 x\left(\ln \frac{1}{x}-\ln x\right)=-4 x \ln x, \quad 0<x<1$.
(b) Find the conditional expected value of $Y$ on condition that $X=x$.

Solution: $f_{2 \mid 1}(y \mid x)=\frac{f(x, y)}{f_{1}(x)}=-\frac{1}{2 y \ln x}$. So $\mathbb{E}(Y \mid X=x)=\int_{x}^{\frac{1}{x}} y f_{2 \mid 1}(y \mid x) d y=\frac{x-\frac{1}{x}}{2 \ln x}$. (5 points for each)
7. Give the meaning of the variance of
(a) the data set $\{1 ; 3 ; 7 ; 8 ; 11\}$ by making simple calculations (without using calculator). (Show the details of your calculations.)
Solution: The sample variance of the above 5-element sample is

$$
\frac{1}{5} \sum_{i=1}^{5}\left(X_{i}-\bar{X}\right)^{2}=\frac{1}{5} \sum_{i=1}^{5} X_{i}^{2}-\bar{X}^{2}=\frac{64}{5}=12.8
$$

where $\bar{X}=\frac{1}{5} \sum_{i=1}^{5} X_{i}$ and $X_{1}=1, \ldots, X_{5}=11$.
(b) a continuous random variable by a correct(!) mathematical formula.

Solution: $\operatorname{Var}(X)=\mathbb{E}(X-\mathbb{E} X)^{2}=\mathbb{E}\left(X^{2}\right)-(\mathbb{E}(X))^{2}$, and with density: $\sigma^{2}=\int(x-\mu)^{2} f(x) d x=$ $\int x^{2} f(x) d x-\mu^{2}$, where $\mu=\int x f(x) d x$.
In both parts we used the Steiner identity. (5 points for each)

