PROBABILITY EXAM, 201612 19, SOLUTIONS

1. a. X can take on values $1,2,3,4$. The probability mass function of X is

$$
\begin{array}{crrrr}
\mathrm{x} & 1 & 2 & 3 & 4 \\
\mathrm{p}(\mathrm{x}) & \frac{5}{8} & \frac{3}{8} & \frac{3}{8} \frac{2}{7} \frac{5}{6} & \frac{3}{8} \frac{2}{7}
\end{array}
$$

(Not a geometrical distribution, the sampling happens without replacement.)
b. Since 1000 is 'large', the average of the number of draws is apprioximately the expectation

$$
\mathbb{E}(X)=1 \cdot \frac{5}{8}+2 \cdot \frac{3}{8} \frac{5}{7}+3 \cdot \frac{3}{8} \frac{2}{7} \frac{5}{6}+4 \cdot \frac{3}{8} \frac{2}{7} \frac{1}{6}=\frac{84}{56}=1.5
$$

(5-5 points for each part)
2. a. The number (X) of the earthquakes (of any type) has Poisson distribution with parameter $2.5+0.5=3$.

$$
\mathbb{P}(X=0)=e^{-3}
$$

b. Let Y denote the number of serious earthquakes during three consecutive years. Y has Poisson distribution with parameter $3 \cdot 0.5=1.5$.

$$
\mathbb{P}(Y>1)=1-\mathbb{P}(Y=0)-\mathbb{P}(Y=1)=1-e^{-1.5}-2.5 e^{-1.5} .
$$

(5-5 points for each part)
3. The hight of a randomly selected woman is $X \sim \mathcal{N}(170,5)$, while the hight of a randomly selected man is $Y \sim \mathcal{N}(180,10)$. Therefore,

$$
\begin{aligned}
& p=\mathbb{P}(175<X<180)=\mathbb{P}\left(1<\frac{X-170}{5}<2\right)=\Phi(2)-\Phi(1) \\
& q=\mathbb{P}(175<Y<180)=\mathbb{P}\left(1<\frac{Y-180}{10}<2\right)=\Phi(0)-\Phi(-0.5) .
\end{aligned}
$$

(2 points)
a. H : both have hight between 175 and 180 cm . A complete set of mutually disjoint events is: $W W, W M, M W, M M$ (both are women,...). Then

$$
\begin{aligned}
& \mathbb{P}(H)=\mathbb{P}(H \mid W W) \cdot \mathbb{P}(W W)+\mathbb{P}(H \mid W M) \cdot \mathbb{P}(W M)+\mathbb{P}(H \mid M W) \cdot \mathbb{P}(M W)+ \\
& \quad \mathbb{P}(H \mid M M) \cdot \mathbb{P}(M M)=p^{2} \cdot 0.65^{2}+2 p q 0.65 \cdot 0.35+q^{2} 0.35^{2}
\end{aligned}
$$

Observe that this is the same as $(p \cdot 0.65+q 0.35)^{2}$ which is an equivalently good solution. (4 points)
b. By the Bayes theorem,

$$
\mathbb{P}(W W \mid H)=\frac{\mathbb{P}(H \mid W W) \cdot \mathbb{P}(W W)}{\mathbb{P}(H) \text { as in part a. }}
$$

(4 points)
4. a .

$$
\mathbb{P}(0.5<X<2.5)=F(2.5)-F(0.5)=\frac{1}{27}\left(2.5^{3}-0.5^{3}\right)
$$

(4 points)
b. We need the probability density function $f(x)=F^{\prime}(x)=\frac{x^{2}}{9}, 0<x<3$. Then

$$
\mathbb{E}(X)=\int_{0}^{3} x \cdot \frac{x^{2}}{9} d x=2.25
$$

(6 points).
5. X : weight of a sack of potatoes $\sim \mathcal{N}(10,0.3)$.
a.

$$
p=\mathbb{P}(X<9.9)=\mathbb{P}\left(\frac{X-10}{0.3}<\frac{-0.1}{0.3}\right)=\Phi\left(-\frac{1}{3}\right)=1-\Phi\left(\frac{1}{3}\right) .
$$

b. The number of such sacks out of 5 follows binomial distribution with parameters 5 and p. Therefore, the probability that more than 2 have weight less than 9.9 is

$$
\sum_{k=3}^{5}\binom{5}{k} p^{k}(1-p)^{5-k}
$$

(5-5 points for each part)
6. a. The density of X is

$$
f_{1}(x)=\int_{x}^{1} 3 y d y=\frac{3}{2}\left(1-x^{2}\right), \quad 0<x<1 .
$$

(4 points)
b. We need the density of Y which is

$$
f_{2}(y)=\int_{0}^{y} 3 y d x=3 y^{2}, \quad 0<x<1 .
$$

(2 points)
Then

$$
f_{1 \mid 2}(x \mid y)=\frac{f(x, y)}{f_{2}(y)}=\frac{3 y}{3 y^{2}}=\frac{1}{y}, \quad 0<x<y<1 .
$$

(4 points)

