Tests: \qquad Exam: \qquad Total: \qquad GRADE: \qquad

NAME: \qquad NEPTUN: \qquad

Exam 20170109 , 90 minutes

1. In a box there are 5 red and 3 blue balls. You pick balls, one after the other without replacement. You stop picking when two red has already been drawn. Let X mean the number of draws.
(a) Set up a table for the distribution of X.
(b) If you made 1000 experiments, approximately how much would be the average of the number of draws?
2. The life-time of an object has a uniform distribution between 0 and B. Approximately only 25% of such objects live more than 6 years.
(a) How much is the expected value of these objects?
(b) What is the probability that such an object lives more than 6 years on condition that it lives more than 5 years?
3. The height of a randomly chosen man follows the normal distribution with an expected value of 180 cms and a standard deviation of 10 cms . The height of a randomly chosen woman follows the normal distribution with an expected value of 170 cms and a standard deviation of 5 cms . In a large group of people 25% are men, 75% are women. You choose persons one after the other until a the person is higher than 190 cms , and then you stop choosing.
(a) What is the probability that you make exactly 4 choices?
(b) What is the probability that the person is a woman on condition that you make exactly 4 choices?
4. X is a random variable with values between $-\infty$ and 0 . The density function of X is $f(x)=3 \mathrm{e}^{3 x}$ on the interval $-\infty ; 0$.
(a) What is the probability that $-2.5<X<-0.5$?
(b) Determine the expected value of X.
5. (X, Y) follows the distribution which has the density function

$$
f(x, y)=\frac{2 x}{y} \quad\left(0<x<1, x<y<\frac{1}{x}\right)
$$

(a) Find the density function of X.
(b) Find the conditional expected value of Y on condition that $X=x$.
6. Give the meaning of the variance of
(a) the data set $\{1 ; 3 ; 7 ; 8 ; 11\}$ by making simple calculations (without using calculator). (Show the details of your calculations.)
(b) a continuous random variable by a correct(!) mathematical formula.

Standard normal distribution function

x	$\Phi(x)$										
0,0	0,50	0,5	0,69	1,0	0,84	1,5	0,93	2,0	0,98	2,5	0,99
0,1	0,54	0,6	0,73	1,1	0,86	1,6	0,95	2,1	0,98	2,6	1,00
0,2	0,58	0,7	0,76	1,2	0,88	1,7	0,96	2,2	0,99		
0,3	0,62	0,8	0,79	1,3	0,90	1,8	0,96	2,3	0,99		
0,4	0,66	0,9	0,82	1,4	0,92	1,9	0,97	2,4	0,99		

