Laplace Transformation

1. Basic notions

Definition

For any complex valued function f defined for $t>0$ and complex number s, one defines the Laplace transform of $f(t)$ by

$$
F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

if the above improper integral converges.

Notation

We use $\mathrm{L}(f(t))$ to denote the Laplace transform of $f(t)$.

Remark

It is clear that Laplace transformation is a linear operation: for any constants a and b :

$$
\mathrm{L}(a f(t)+b g(t))=a \mathrm{~L}(f(t))+b \mathrm{~L}(g(t))
$$

Remark

It is evident that $F(s)$ may exist for certain values of s only. For instance, if $f(t)=t$, the Laplace transform of $f(t)$ is given by (using integration by parts : $u \xlongequal{\circ} t, v^{\prime} \xlongequal{\circ} e^{-s t}$):
$\int t e^{-s t} d t=-\frac{t}{s} e^{-s t}-\left(-\frac{1}{s} \int e^{-s t} d t\right)=-\frac{t}{s} e^{-s t}+\frac{1}{s^{2}} e^{-s t} \leadsto$ $\leadsto \int_{0}^{\infty} t e^{-s t} d t=-\frac{t}{s} e^{-s t}+\left.\frac{1}{s^{2}} e^{-s t}\right|_{0} ^{\infty}=\frac{1}{s^{2}}$ if $s>0$ and does not exists if $s \leq 0$.
Therefore $\mathrm{L}(t)=\frac{1}{s^{2}}$.

Theorem

If $f(t)$ is a piecewise continuous function defined for $t \geq 0$ and satisfies the inequality $|f(t)| \leq M e^{p t}$ for all $t \geq 0$ and for some real constants p and M, then the Laplace transform $\mathrm{L} f(t))$ is well defined for all $\operatorname{Re} s>p$.

Illustration

The function $f(t)=e^{3 t}$ has Laplace transform defined for any $\operatorname{Re} s>3$, while $g(t)=\sin k t$ has Laplace transform defined for any $\operatorname{Re} s>0$. The tables on the following page give the Laplace transforms of some elementary functions.

Remark

It is clear from the definition of Laplace Transform that if $f(t)=g(t)$, for $t \geq 0$, then $F(s)=G(s)$. For instance, if $H(t)$ is the unit step function defined in the following way: $H(t)=0$ if $t<0$ and $H(t)=1$ if $t \geq 0$, then $\mathbf{L}(\boldsymbol{H}(\boldsymbol{t}))=\mathbf{L}(\mathbf{1})=\frac{\mathbf{1}}{\boldsymbol{s}}$ and (as we have seen above) $\mathbf{L}(\boldsymbol{H}(\boldsymbol{t}) \boldsymbol{t})=\mathbf{L}(\boldsymbol{t})=\frac{1}{\boldsymbol{s}^{2}}$. Generally, $\mathbf{L}\left(\boldsymbol{H}(\boldsymbol{t}) \boldsymbol{t}^{n}\right)=\mathbf{L}\left(\boldsymbol{t}^{n}\right)=\frac{n!}{s^{n+1}}$.

2. Inverse Laplace Transforms

Definition

If, for a given function $F(s)$, we can find a function $f(t)$ such that $\mathrm{L}(f(t))=F(s)$, then $f(t)$ is called the inverse Laplace transform of $F(s)$. Notation: $f(t)=\mathrm{L}^{-1}(F(s))$.

Examples
$\mathrm{L}^{-1}\left(\frac{1}{s^{2}}\right)=t . \quad \mathrm{L}^{-1}\left(\frac{1}{s^{2}+\omega^{2}}\right)=\frac{\sin \omega t}{\omega} \quad$ (hiszen $\mathrm{L}(\sin \omega t)=\frac{\omega}{s^{2}+\omega^{2}}$ és L lineáris.)
We are not going to give you an explicit formula for computing the inverse Laplace Transform of a given function of s. Instead, numerous examples will be given to show how $\mathrm{L}^{-1}(F(s))$ may be evaluated. It turns out that with the aide of a table and some techniques from elementary algebra, we are able to find $\mathrm{L}^{-1}(F(s))$ for a large number of functions.
Our first example illustrates the usefulness of the decomposition to partial fractions:
Example
$\frac{5 s^{2}+3 s+1}{\left(s^{2}+1\right)(s+2)}=\frac{2 s-1}{s^{2}+1}+\frac{3}{s+2} \leadsto \mathrm{~L}^{-1}\left(\frac{5 s^{2}+3 s+1}{\left(s^{2}+1\right)(s+2)}\right)=2 \cos t-\sin t+3 e^{-2 t}$.

3. Some simple properties of Laplace Transform

3.1 Transform of derivatives and integrals

If f and f_{0} are continuous for $t>0$ such that $f(t) e^{-s t} \longrightarrow 0$ as $t \longrightarrow \infty$, then we may integrate by parts to obtain $(F(s)=\mathrm{L}(f(t)))$

$$
\begin{equation*}
\mathbf{L}\left(\boldsymbol{f}^{\prime}(\boldsymbol{t})\right)=\int_{0}^{\infty} e^{-s t} f^{\prime}(t) d t=\boldsymbol{s} \boldsymbol{F}(\boldsymbol{s})-\boldsymbol{f}(\mathbf{0}) \tag{1}
\end{equation*}
$$

(indeed by $u^{\prime}=f^{\prime}(t), v=e^{-s t}: \int_{0}^{\infty} f^{\prime}(t) e^{-s t} d t=\left.f(t) e^{-s t}\right|_{0} ^{\infty}-s \int_{0}^{\infty} f(t) e^{-s t} d t=-f(0)-s F(s)$)
and applying this formula again (assuming the apropriate conditions concerning the function and it first and second derivative hold):

$$
\mathrm{L}\left(f^{\prime \prime}(t)\right)=s \mathrm{~L}\left(f^{\prime}(t)\right)-f^{\prime}(0)=s(s F(s)-f(0))-f^{\prime}(0)=s^{2} F(s)-s f(0)-f^{\prime}(0) .
$$

Similarly (again assuming the apropriate conditions concerning the derivatives hold) we obtain the general formula:
$\mathrm{L}\left(f^{(n)}(t)\right)=s^{n} F(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\ldots-s f^{(n-2)}(0)-f^{(n-1)}(0)$.

Example

$\mathrm{L}(\cos t)=\mathrm{L}\left(\sin ^{\prime} t\right)=s \mathrm{~L}(\sin t)-\sin 0=\frac{s}{s^{2}+1}$
It follows from (1) that
$(*) \mathrm{L}(f(t))=F(s)=\frac{1}{s}\left(\mathrm{~L}\left(f^{\prime}(t)\right)+f(0)\right)$
Example
$\mathrm{L}\left(\sin ^{2} t\right)=\frac{1}{s}(\mathrm{~L}(\sin 2 t)+0)=\frac{2}{s\left(s^{2}+4\right)}$

Corollary

If f is continuous, then $\mathbf{L}\left(\int_{0}^{t} f(\tau) d \tau\right)=\frac{1}{s} \mathbf{L}(f(t))$.
(Indeed $\left(^{*}\right)$ can be applied to the function $g(t)=\int_{0}^{t} f(\tau) d \tau$.)
3.2 Transform of shifts in s and t
(a) If $\mathrm{L}(f(t))=F(s)$, then $\mathbf{L}\left(\boldsymbol{e}^{\boldsymbol{a t}} \boldsymbol{f}(\boldsymbol{t})\right)=\boldsymbol{F}(\boldsymbol{s}-\boldsymbol{a})$ for any real constant a.

Note that $F(s-a)$ represents a shift of the function $F(s)$ by a units to the right.
(b) The unit step function $s(t)=0$, ha $t<0$ és $s(t)=1$, ha $t \geq 0$:

If $a>0$ and $\mathrm{L}(f(t))=F(s)$, then $\mathbf{L}(\boldsymbol{f}(\boldsymbol{t}-\boldsymbol{a}) \cdot \boldsymbol{s}(\boldsymbol{t}-\boldsymbol{a}))=\boldsymbol{F}(\boldsymbol{s}) \boldsymbol{e}^{-\boldsymbol{a s}}$.

Example

Since $s^{2}-2 s+10=(s-1)^{2}+9$, we have

$$
\frac{s+2}{s^{2}-2 s+10}=\frac{s-1}{(s-1)^{2}+9}+\frac{3}{(s-1)^{2}+9}, \text { így } \mathbf{L}^{-1}\left(\frac{s+2}{s^{2}-2 s+10}\right)=e^{t}(\cos 3 t+\sin 3 t) .
$$

3.3 Transform of power multipliers

If $\mathrm{L}(f(t))=F(s)$, then

$$
\mathrm{L}\left(t^{n} f(t)\right)=(-1)^{n} \frac{d^{n}}{d s^{n}} F(s)
$$

for any positive integer n, particularly $\mathbf{L}(\boldsymbol{t} \boldsymbol{f}(\boldsymbol{t}))=(-1) \boldsymbol{F}^{\prime}(\boldsymbol{s})$.

3.4 Convolution

Definition

Given two functions f and g, we define, for any $t>0$,

$$
(f * g)(t)=\int_{0}^{t} f(x) g(t-x) d x
$$

The function $f * g$ is called the convolution of f and g.
Remark The convolution is commutative.
Theorem (The convolution theorem)

$$
\mathrm{L}((f * g)(t))=\mathrm{L}(f(t)) \cdot \mathrm{L}(g(t)) .
$$

In other words, if $\mathrm{L}(f(t))=F(s)$ and $\mathrm{L}(g(t))=G(s)$, then $\mathrm{L}^{-1}(F(s) G(s))=(f * g)(t)$.

Example

$\mathrm{L}^{-1}\left(\frac{s}{\left(s^{2}+\omega^{2}\right)^{2}}\right)=\mathrm{L}^{-1}\left(\frac{s}{s^{2}+\omega^{2}} \cdot \frac{1}{s^{2}+\omega^{2}}\right)=\mathrm{L}^{-1}\left(\frac{s}{s^{2}+\omega^{2}}\right) * \mathrm{~L}^{-1}\left(\frac{1}{s^{2}+\omega^{2}}\right)=$
$=\cos \omega t * \frac{\sin \omega t}{\omega}=\frac{1}{\omega} \int_{0}^{t} \cos \omega x \sin \omega(t-x) d x=$
$=\left.\frac{1}{\omega^{2}}\left(\frac{1}{4} \cos (-2 \omega x+\omega t)+\frac{1}{2} t \omega \sin (\omega t)\right)\right|_{0} ^{t}=$
$=\frac{1}{\omega^{2}}\left(\frac{1}{4} \cos (\omega t)+\frac{1}{2} t \omega \sin (\omega t)\right)-\frac{1}{\omega}\left(\frac{1}{4} \cos (\omega t)\right)=\frac{1}{2 \omega} t \sin (\omega t)$,
where in order to integrate, we have used addition formulas for the trigonometric functions.
A simpler example: $\mathrm{L}^{-1}\left(\frac{1}{s\left(s^{2}+1\right)}\right)=\mathrm{L}^{-1}\left(\frac{1}{s} \frac{1}{s^{2}+1}\right)=1 * \sin t=\int_{0}^{t} \sin (t-x) d x=$
$=\int_{0}^{t}(\sin t \cos x-\cos t \sin x) d x=\left.\sin t \sin x\right|_{0} ^{t}+\left.\cos t \sin x\right|_{0} ^{t}=\sin ^{2} t+\cos ^{2} t-\cos t=$ $=1-\cos t . \quad$ Indeed, $\mathrm{L}(1-\cos t)=\frac{1}{s}-\frac{s}{s^{2}+1}=\frac{s^{2}+1-s^{2}}{s\left(s^{2}+1\right)}=\frac{1}{s\left(s^{2}+1\right)}$.

3.5 Laplace Transform of a periodic function

Definition

A function f is said to be periodic if there is a constant $T>0$ such that $f(t+T)=f(t)$ for every t. The constant T is called the period of f.

The sine and cosine functions are important examples of periodic function. One other example is the periodic triangular wave. It is is the function defined by $f(t)=t$ if $0 \leq t \leq 1, f(t)=2-t$ if $1 \leq t \leq 2$ and $f(t+2)=f(t)$ for any t.
The following proposition is useful in calculating the Laplace Transform of a periodic function.

Proposition

Let f be a periodic function with period T and f_{1} is one period of the function, Then (as usual $F(s)=\mathrm{L}(f(t)))$:

$$
F(s)=\frac{\mathrm{L}\left(f_{1}(t)\right)}{1-e^{-T s}}=\frac{1}{1-e^{-T s}} \int_{0}^{T} e^{-s t} f(t) d t
$$

Example

$f(t)=0$ ha $t<0, f(t)=t$ ha $0 \leq t \leq 1$ és $f(t+n)=f(t)$ tetszőleges n-re:

Now $f_{1}(t)=0$ if $t<0$ and $t>1$, further $f_{1}(t)=t$ if $0 \leq t<1$, then defining $h(t)=0$ if $t<0$ and $h(t)=t$ otherwise $g(t)=0$ if $t<0$ and $g(t)=t+1$ otherwise,
we have $f_{1}(t)=h(t)-g(t-1)$:

Therefore, $\mathrm{L}\left(f_{1}(t)\right)=\mathrm{L}(h(t))-\mathrm{L}(g(t-1))=\frac{1}{s^{2}}-e^{-s}\left(\frac{1}{s^{2}}+\frac{1}{s}\right)=\frac{1-e^{-s}-s e^{-s}}{s^{2}}$, that is $\mathrm{L}(f(t))=\frac{\mathrm{L}\left(f_{1}(t)\right)}{1-e^{-s}}=\frac{1-e^{-s}-s e^{-s}}{s^{2}\left(1-e^{-s}\right)}$.

