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Characterizations of congruence lattices
of abstract algebras

By G. GRATZER and E. T. SCHMIDT in Budapest

INTRODUCTION

In this paper we deal with the characterization problem of the lattice ®(4)
of all congruence re¢lations of an abstract algebra A (briefly, congruence lattice).
In § 1 of the Introduction we summarize our results concerning the general characte-
rization problem, the solution of which answers Problem 50 of G. BirRkHOFF {1],
originally proposed by BIRKHOFF and FRINK [2]. In § 2 we show that the represen-
tation theorems of WHiTMAN and JONSSON are easy consequences of our results; we
also solve the problem of complete representation. Concerning congruence lattices
of type 2 and 3 we are able to prove more than the results stated in § 1. These
results are summarized in § 3 in the form of embedding theorems for abstract al-
gebras. In the next section we outline the method of the paper based on the sys-
tematic study of partial abstract algebras. The contents of the paper are sketched in
the same section.

§ 1. Congruence lattices

An element x of the complete lattice L is called compact if x=V (x;; A€A)
implies x=V (x;; A€A’) for some finite A" S A. A lattice L is compactly generated
if it is complete and every element of L is the complete join of compact elements.

If 4 is an abstract algebra, a, b€ 4, then there is a least ® ¢ ®(4) such that
a=5b(0); this is denoted by ®,,. Every @, as an element of ®(4) is easily shown
to be compact and thus every congruence lattice is compactly generated.')

The question whether or not every compactly generated lattice is isomorphic
to a congruence lattice was proposed by BIRkHOFF and FRINK [2], again in BIRKHOFF
[1] as Problem 50. One of our principal results is to answer this problem affirmatively.

Theorem 1. To any compactly generated lattice L there corresponds an abstract
dgebra A for which @(A), the lattice of all congruence relations of A, is isomorphic
to L.

1) This assertion was first observed by Birxkuorr and Frink [2]; the conditions they have
used are equivalent to, yet different from, those used above. The notion of compact element goes
back to Biica [3] and Nacusim [10]. In [7], HasavoTo proves that every congruence lattice is iso-
morphic to the lattice of all ideals of a semilattice, a statement again equivalent to the above one.
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One may hope to get a stronger form of Theorem 1, so as to impose further
conditions on 4. In order to do this, consider ®, @€ @(4) and x, y€ 4. It is known
that x =y(@ U ®) if and only if there exists a sequence X ==Zg, Zy, -+vs Zp» Zmar1 =¥
of elements of 4 such that z;=z,_(®) or z;=2z;.(®) (i=1,2,...,m+1). We
say A is of type n if, for every x, y, ©, ® (x=y(® U ®)), the sequence {z;} may be
chosen so that m =n. This means, that while in an arbitrary abstract algebra, corres-
ponding to a fixed quadruple x, y, ®, @, the least m may be arbitrarily large, in
algebras of type n, m may not exceed n; e. g. a ring or a group is always of type 1.

It is easy to prove that if 4 is of type 1 or 2 then @(4) is modular. Hence, from
this point of view we get the best possible result if we can replace 4 of Theorem I
by one of type 3. This is done in

Theorem L. Let L be a compactly generated lattice. Then there exists an
abstract algebra A of type 3 such that L and ©(d4) are isomorphic,

As wesaid above, if 4 is of type 2 then ©@(A4) is modular. This raises the question:
which lattices are isomorphic to such a &(4)? This is answered by

Theorem III. Every compactly generated modular lattice is isomorphic to
the congruence lattice of a suitable abstract algebra of type 2.

§ 2. Representations

If H is a set then the set &(H) of all equivalence relations of H is a complete
lattice and &(H)= @(H)if-H is considered as an abstract algebra without operations.
By a representation of the lattice L we mean an ordered pair (F, H), where

H is a set and
. x - F(x)
is an isomorphism of L into &(H). If this isomorphism preserves complete join
and meet, then the representation is called complete.
It is well known that (F, 4),
: F(0)=0,
is a complete representation of @(A4); this will be called the natural representation
of ®(4). Further, it is easily shown that a lattice having a complete representation
is compactly generated. Hence Theorem I implies at once

Corollary L. 1. A complete lattice L has a complete representation if and
only if L is compactly generated.

This is the analogue of WHITMAN’s fundamental theorem [11], asserting that
every lattice has a representation. In fact, WHITMAN’s theorem is a trivial consequence
of Corollary 1. 1. Indeed, if L, is a lattice then we extend it to L, by adding a zero
element. Then we define L as the lattice of all ideals of L, . Obviously, L is compactly
generated, hence by Corollary I. 1 it has a representation (F, H) which is at the
same time a representation of L;. Thus

Corollary I.2. (WHITMAN [11].) Every lattice has a representation.

JonssoN [8] defined the concept of representation of type n. If x, y€ L and if
(F, H) is a representation of L, then define F(x); F(y) as the relation theoretic
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product of F(x) and F(p), i. e. u=v(F(x); F(3)) (u,v€ H) if and only if there is a
wé H such that u=w(F(x)) and w=0(F(y)). Then F(x)U F(y) is the join of the
ascending series

F(x); F(y), F(x); F(y); F(x), F(x); F(y); F(x); F(y), ... .

If this series terminates at its n-th member for all x, y € L then the representation
{F, H) of L is said to be of type n.

1t is obvious that an abstract algebra A is of type n if and only if the natural
representation of @(A) is of type n. Thus we get

Corollary IL 1. 4 complete lattice L has a complete representation of type 3
if and only if it is compactly generated.

Corollary IL 2. (JoNssoN [8].) Every lattice has a representation of type 3.
And, similarly, the consequences of Theorem III are:

Corollary 111 1. A complete lattice L has a complete representation of type 2,
if and only if L is modular and compactly generated,

Corollary IIL 2. (JonssoN [81.) Every modular lattice has a representation of

type 2, and conversely.
kS

Another type of representation is obtained by means of subgroups of a group.
A subgroup representation { F, G of alattice L consists of a group G and an isomorph-
ism F of L into L(G), the lattice of all subgroups of G. The subgroup representation
is complete, if the isomorphism preserves complete joins and meets. .

From Theorem I we conclude easily

Corollary L 3. 4 complete lattice L has a complete subgroup representation
if and only if L is compactly generated.

Corollary 1. 4. (WHITMAN [11].) Every lattice has a subgroup representation.

§ 3. Embedding of abstract algebras

To prove Theorem II and III it is enough to construct only one abstract algebra
A satisfying the hypotheses. In fact, we can prove much more. Given an arbitrary
abstract algebra 4 we embed it in an abstract algebra B, such that ©(4)= @(B)
and B is of type 3, or of type 2 if ®(4) is modular. These — together with Theorem I
— are much more than Theorems II and IIl. For a precise formulation of these
new theorems we need a definition of embedding, because in these constructions 4
is not a subalgebra of B. -

We say that the algebra B is an extension of the algebra A4 if 2)

1. ASB;

2. to every operation f of 4 there corresponds an operation f of B (the extension
of f), such that f(a,, ay, ..., a,) = flay, az, -, a,) if ay, a,, ..., a,€A.

If B is an extension of A4 and ©® is a congruence relation of B then it includes
a congruence relation @ on 4: let a=b(0), g, bcAifand only if a=5(0). f © O

2) € is the set theoretical inclusion.
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is an isomorphism between @(B) and ®(4) then we say that ©(B) and ©(4) are
isomorphic in the natural way.

Theorem II'. Every abstract algebra 4 may be extended to an abstract algebra
B of type 3, such that ©(A) is isomorphic to ©(B) in the natural way.

Theorem III'. Let A be an abstract algebra such that @(A) is modular. Then
A has an extension B of type 2, such that ©(4) is isomorphic to ©(B) in the natural
way.

§ 4. The method and lay-out of the paper

To prove the theorems listed above we have to construct abstract algebras; to
carry out these constructions seems to be rather difficult. But if we dispense with
the assumption that an operation of an abstract algebra must be defined for every
n-tuple (n depending on the operation), thus getting the definition of partial abstract
algebra, then the task is fairly easy. The difficulty lies in the next step: we want
to extend the partial abstract algebra to an abstract algebra so that the ,,good”
properties should not be altered. E. g. such a property is that @(A4) be isomorphic
to L, where L is fixed.

"We use two methods to bypass these difficulties: the first is the extension of a
partial algebra to a free algebra; and the second is a procedure which identifies
the ,,new” congruence relations of the free algebra with the congruence relations
of the partial algebra.

It is not surprising that on proving theorems for abstract algebras the key
role is played by partial abstract algebras, for partial algebras are nothing but
generating systems considered in abstracto. This was kept in mind when the analogues
of the notions of abstract algebras were defined for partial abstract algebras.

In the Introduction only the most important results are listed. All the theorems
of the paper are numbered by arabic numerals; these are related to the results
mentioned in the Introduction as follows: Theorem I is essentially Theorem 10;
Theorem II is part of the Corollary to Theorem 14; Theorem II” is part of Theorem
14; Theorem III is contained in the Corollary to Theorem 15; Theorem III” is con~
tained in Theorem 15,

The contents of the paper are the following: In Chapter I the notion of partial
abstract algebra and the free algebra generated by a partial algebra are introduced
and some of their properties are examined. The most important result of this part
is TheoremS5 which states that every congruence relation of a partial algebra may be
extended to the free algebra generated by the partial algebra. In Chapter II contruc-
tions are developed in order to prove Theorem 10 (Theorem I). In the last section
several applications of Theorem 10 are proved. In Chapter III our first task is to
modify the construction in Chapter Il in order to prove Theorem 14 (Theorem II).
Finally, an analysis of the proof of Theorem 14 shows how to make further modi-
fications which lead us to Theorem 15 (Theorem III).

Some open questions are mentioned in the last section of Chapter III.
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CHAPTER I
PARTIAL ABSTRACT ALGEBRAS

§ 1. Some notions and notations

Set theoretical join and meet of the sets 4, B will be designated by Av B, AAB
and by VA,, A 4,, if « runs over an index set. A\ B stands for the set theoretical
difference if A28, i.e. BV(A\B) = 4, BA(A\B) O (the void set).

Let a set 4 be given. A partial operation f on A is a function which maps a part
of AXAX... XA (n times) into 4. The domain of f will be denoted by D(f, 4)
(CAXAX XAIED(S, A) = A XA X... X A4, then fis an operation, If D(f, 4) =
then f is called frivial.

A partial abstract algebra (briefly: partial algebra) is a set 4 and a set P(4)
of partial operations defined on 4. Let P*(4) denote the set of all non trivial opera-
tions of A. We say that the partial algebra B is the homomorphic image of the partial
algebra A, if there is a many-one mapping 5 of 4 onto B and a one-to-one corres-
pondence f—>g between P¥*(4) and P*(B) such that the usual property

nflag, az, - a,) = glnay, nay, ..., na,) (ag, @z, -, @) ED(S, 4)
holds true. It is an isomorphism if y is one-to-one. We should like to point out that
in the definition of homomorphism and isomorphism the trivial operations are
dispensed with. Endomorphisms and automorphisms are defined as usual.

According to the definition of homomorphism, an equivalence relation © of 4
is called a congruence relation if {4, ....a,), (b1, ... BYED(f, A), a;=b(®)
(i=1,2,..,m), feP(4) imply flay, ..., a)=f(by, ..., ) (®). Under the usual
partial ordering the congruence relations of 4 form a complete lattice @(4) called
the congruence lattice of A.

Theorem 1. If 4 is a partial algebra, then ©(4) is a compactly generated
lattice®).

Proof. The proof of the similar assertion for algebras uses the well known
description of the complete join in @(4). Although this fails to be true in case of
partial algebras, the following weaker analogue is true: if x=y(V®,) (x,y€4)

n”
then there exists a finite subset {©,} of the {©,} such that x=y | V ©,]. Using
i=]
this weaker assertion one can prove that the congruence relation © is compact
if and only if it is of the form V O, Where O, (g, b€ A) denotes the least congru-

ence relation under wich a= b From this the assertion of the theorem follows
as usual.

Let A be a partial algebra and H a subset of 4 and P a subset of P(A). If fis a
partial operation of 4 beloging to P then it may be also considered as a partial
operation %) of H:(hy, ..., h,) (h;€ H) is in the domain of fif {(hy, ..., A) € D(f, A)

*) The notion of compactly generated lattice is defined in § 1 of this Introduction.
4} There is no danger of confusion, therefore we do not introduce notation for the restricted
operation..
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and f(hy, ..., h,) € H. With this definition H is a partial algebra and P=P(H)CS
S P(A). In this case 4 will be called an extension of H. (Or we may say that H is a
restriction of A.) Using this construction of partial algebras one says that a generating
systems of an algebra may always be considered as a partial algebra. The converse
of this statement is the

Theorem 2. Every partial algebra miay be extended to an algebra.

Proof. The assertion is trivial: if 4 is a partial algebra then let B={4, p}
where p is a new element and if feP(4) and (uy, ..., 4 )E D(f, A) @y, ..., u, € B)
then define f(u,, ..., ,) =p. Obviously, B is an algebra and it is an extension of 4.

§ 2. Free algebras

In the proof of Theorem 2 the least extension of a partial algebra to an algebra
has been constructed. Nevertheless, this construction fails to have the property
that every congruence relation of the partial algebra may be extended to the algebra,
which is a very important property in this paper. Therefore we confine now our
attention to the construction of an extension having this additional property.

It is much simpler to perform this construction if on the partial algebra only
partial operations of one variable are defined. Since in this and in the next chapter
only such partial algebras are dealt with we suppose that this is the case.

Let S be a partial algebra such that P(S) consists of partial operations of one
variable. In this case if g€ P(S) then D(gp, S)E S. Further, let p(H), HE D(p, S)
denote the set of all ¢(x), x€H. If @, ¥ € P(S) we put gy (x) = p((x)). Similarly,
we use the notation @y...¢(%) (4, ..., g, EP(S), x€S).

We fix a g€ P(S) and to every x€ S\ D(p, S) we define a new element X,
such that X¢ S and x=y, x, y€SN\D(p, S) imply X #y. The set formed by S and
all the X is denoted by S[¢]. We define partial operations on S[¢]:

1. Let every partial operation ¥ of S different from ¢ be a partial operation
of $[¢] with an unchanged domain: D(y, S) = D(J, S[¢));

2. @ is a partial operation of S{p]; on D(p, S) it is defined as it was; if
XES™D{p, S) then p(x)=X%; @(x) is defined for no x € S[p]\.S.

S[g] with the partial operations defined under 1 and 2 is a partial algebra;
it is an extension of S. The element X (x€.S\.D(gp, S)) will be denoted by @(x).

To every o € P(S) we construct S[¢] such that if g2y then S[g]a S[¥]=S.
‘We define S, as the join of the S[g]:

8, = V (Slel; g€ P(S)).

S, as the set theoretical join of partial algebras is itself a partial algebra. We
may write also P(S)=P(S,), for every partial operation of §, is the extension of
a partial operation of S, Thus S, is an extension of S. In a similar way we define

Sy =V (Silpl; 9 €P(S)), ..., Sp = V (Sy-1[1; 9 €P(S)).
The partial algebras S, S,, ... form an ascending chain, all of them are extensions
of S, indeed, S, is an extension of §,_,; thus their join S is also a partial algebra
and it is also an extension of S, and P(S)=P(S).
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Theorem 3. S as constructed above is an algebra, and S is gemerated by S.
The algebra S is free in the following sense: if the algebra S* is generated by the
partial algebra S’, P(S")=P(S*) and x~x’ is an isomorphism between S and S’
then x—~x' may be extended to a homomorphism of S onto S*.

Proof: trivial.
§ 3. Extension of congruence relations

Let the partial algebra B be an extension of the partial algebra 4. We say that
the congruence relation ® of B is the extension of the congruence relation © of 4
if x=y(®) and x=y(®) are equivalent whenever x, y€ 4. If © has an extension,

then it has, obviously, a least extension, which will be denoted by e.
Theorem 4. Every congruence relation of S may be extended to S|l

Supplement. If @€ O(S) and © is the least extension of © to Slyp] then ©
may be described as follows: u=v(®) (u, v€ S[pl) if and only if one of the following
conditions hold:

L w,veS and u=v(0);

IL w,veS[pI\ S, i.e. u=gp(x), v=0(p), where x, € S\ D(p, S) and either
1. xb? g)(@) or 2. there exist a= p(xy), b=p(¥o) €S such that x =x,(0), y=yo(0),
a= R

IIL ucS,veS[pl\ S (or symmetrically, interchanging u and v), i. e. v=q(),
yES\D(p, S) and there exists an a= (o) € S, for which u=a(®) and y =y(®).

Fig. 1 belps to visualize case I IIL

o)

oply=v

Fig. 1
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In Fig. 1 a broken line connecting two elements means that the two elements-
are congruent modulo @,

Proof. Let ©[¢] be the relation defined by I--III of Supplement to Theorem 4..

It is enough to prove that it is a congruence relation, for the relation ®[¢] =@ is
then obvious.

Owing to I and II/1 we get that ©[g] is reflexive and, by the symetry of I—IlI in.
u and v, it is also symmetric. The substitution property may be proved as follows:.
Let y€P(S[g]) = P(S), x=y(®lg]) and x,yeD(¥, Slg]). We distinguish two.
cases

@ #y. Then x, y€D(Y, Slg]) = D(¥, S) and by I we get x=y(®) and so-
kl’(x) v’i (J’)(@))a and again by I ¥ (x)=y (»)(®[¢).

(2) p=y. Then necessarily x,y€S. We want to prove @(x)=¢(»)(®[p]);:
this follows from 1if x, y € D(g, S), from I with a = @(x) if x€ D(p, S), y¢ D(p, S)
(and in the symmetncal case), from II/1 if x, y¢D(p, S).

It remains to prove that @[:p] is transitive.

Let u=0v(0[¢]), v=w(O[¢l); we have to prove u=w(O[¢]). We will distinguish
8 cases.

(@) u,v, we S. In this case u=w(O[¢]) is clear owing to I and the transitivity-
of ©.

@) u,veS;weS[pI\§; Le. w=opx),x€S. By I u=v(0); from HI we
conclude the existence of an a=gq(x,) €S satisfying v=a(0), x,=x(0). Thus
u=a(0) and x,=x(0), a=gp(xx)€S, i.e. by Il we get u=w(O[¢]).

(B v,we S; ue S{p]\ 8. The proof is the same as under (8).

&) u,weS;veS[pl\S; i.e. v=¢(), x€S. By lI u——v(@[cp}) means the:
existence of an a==@(x,)€ S such that u=a{®), x, =x(®) Similarly, there exists
a b=g(yo) €S with w=5(0), yo=x(0). Thus xy =yo(0), i. e. a=p(xo) = p(yo)= -
=b(0); consequently, u=a(®), a=5b(®), b=w(0), so u=w(0®), and by I we get
u=w(O[¢]).

©) ueS;v, weS[p]\S; iie. v=p(x), w=g@(y). Owing to III we get that
with suitable a= ¢ (x,) € S the congruences u = a(0), x, = x(®) hold. The congruence-
v=w(O[¢]) means that either

1. x=y(0), or that

2. there exist a’ =¢(xo) and b=¢@(y,) such that x5=x(®), y :y(@) and
a =b(0),

In the first case xo =y(0) and a = ¢(x,) = ¢(») = w(O[g]). But u=a(®). Thus.
owing to III we get u=w(O[g]).

In the second case x, =x4(0), thus a= @{x,) = ¢(xo) =& (©) implying a =b(O)
and so u=5b(0). But y,=y(0), resulting — by III — u=w(O[g]).

(8 we S; u,ve S{p] ™\ 8. The proof is the same as under (9).

(e) vES; u, we S[pl\.S; thus u=g(x), w=g().

Owing to III we get the existence of a= @(x,), b= @(y,) € S such that v=a(0),
Xo=x(0), v=5b(0) and y,=y(@). We get from these a=5(0), and thus owing
to II/2 we get u=w(O[p]).

() uv, we S[@]\ S, thus u= @ (x), v = @(y), w= p(2). Let a= p(x,), b= p(y0),
¢=@(20), d=@(v,) be suitable elements of S. u=v(®[¢]) means either

a/l x=y(0),
or af2 x=x,0), a=5b(0), y,=y(0O).
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v=w(O[¢]) is equivalent to either

b/l y=z(0)
or  bf2 y=2z4(0), c=d(0), vy =z(0).

If a/1 and b/1 hold then x =z(®), thus — by II/1 — uzw(@[cp]) holds.

If a/1 and b/2 hold then x =z,(®), thus II implies u=w(®[g]). The case: when
‘af2 and b/1 hold is similar.

If a/2 and b/2 hold then a=5(0), vy, =y(0), y=12,(0), c=d(0), i. ¢. a=d(0),
thus u=w(0®[¢]). The proof of Theorem 4 is finished.

Based on Theorem 4 we prove

Theorem 5. Let S be a partial algebra and S be the free algebra generated
by S (as defined in § 2). Fvery congruence relation of S may be extended to S.

Before proving this theorem, we need

Lemma 1. Let be given a partial algebra S and a set of partial algebras {S,},
Jor which ‘

1. S, is an extension of S, (P(S)=P(S,);

2. S;ASp=S8 if a#B;

3. X€S8,, 9€P(S), p(x)€S; and a#p imply ¢(x)€S;

4. every congruence relation of © may be extended to every S,.

Then S* =V S, is a partial algebra containing S, S* is an extension of S, and
-every congruence relation of S may be extended to S*.

Proof. Only the last assertion calls for proof. Let @, be the extension of ®
to S,. We define the relation ©:

L x=y(®), x, y€ S, is equivalent to x=y(0,);

IL x=y(®), xc8,, y€S;, a#p if and only if with a suitable ¢€.S we have
x=a(0,), a=y(0y).

It is routine to check that ® is a congruence relation and, obviously, it is an
extension of @ to S*.

.- Now we prove Theorem 5. Let © € ®(S). Theorem 4 guarantees the extenda-
bility of © to the S{g,], ¢,€P(S). The set of the S[g,] satisfies the hypotheses of
Lemma 1, thus ® may be extended to §; (which is the $* of Lemma 1). In a similar
way we get that ©® may be extended to §,, S;, ... and hence to S, finishing the
proof of Theorem 3.

CHAPTER 1T
COMPACTLY GENERATED LATTICES AS CONGRUENCE LATTICES

§ 1. Preliminary constructions

Our principal aim in this chapter is to prove Theorem I (Theorem 10). This
will be done in § 3 while in §§ 1 and 2 some preparations are made.

Let S be a partial algebra, ¢(x), p,(x), p:(x) € P(S), D(py, S)={a}, D(p;, S)=
=, D(p;, S)={b},a, b€ S and g,(a@)=c, p3(b)=d, ¢, d€ S. In the partial aigebra
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\/ Slg;] we identify ¢,(b) with p,(b) and ¢,(a) with ¢;(a) getting the partial algebra
T (see Fig. 2).

o 01=g,05)

@S}

2% {a}::pz (@)

Fig. 2

T’ is an extension of § but it is not necessarily true that every congruence
relation of S may be extended to 7”. Call a congruence relation ® of S admissible
if it satisfies one of the following conditions:

Ay:aZb(0);
Ay:a=b(0) and ¢c=d(0).

Roughly speaking, © is admissible if a=5(0®) implies ¢ =d(0).
Now suppose that ® may be extended to 7" and let ® be an extensions of ©.

If a=5(®) then a=5b(®) and c = ¢,(a) = 9, (b)(®), 72(a) = P2(6)(©), ¢3(a) = 93(6) =
=d(©), thus the assumptions @,(h) = @,(b) and ¢,(a) = ¢;(a) imply that c=d(0),
consequently ¢=d(0).

This proves that if a congruence relation is extensible then it is admissible.
This and the converse of this statement is contained in

Theorem 6. The congruence relation © of S is admissible if and only if it may
be extended to T".

Proof. We have to prove the ,only if”” part of the theorem. Suppose that
O is admissible and define a relation ®* of 77 as follows: let u=v(®*) mean for
u, v € S that u=v(0) and for u, v € p,(S) (p;(S) denotes the set of all p; (x), x€ ) that
u=g;(x),0=;(y), x,y € Sand x = y(®), otherwiseletu # v(©*). Then O* is a symmet-

ric and reflexive relation having the substitution property. Let © denote the transitive
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extension of ®@*. The relation @ is trivially a congruence relation of 7”. We prove
that on S and on the ¢,(S) the relations ® and ®* coincide. It is enough to prove
this for S, a similar reasoning applies then to ¢;(S). Per definitionem u=v(0),
u,v€ S if and only if there exists a sequence u=xg, Xy, ..., X, =0 of elements of
T’ such that x;,_;=x;(0%) (i=1,2,...,n). If all the x;€ S then u=v(0), thus
u=v(0*) is obvious. S and a ¢;(S) (p(S) and a ¢;(S), i=j) have at most one
element in common. This if we impose the mnatural condition on the sequence
Xo, --.s X, that no element may occur more than once, then we see that the sequence
must contain elements from all the ¢;(S). It is easy to see that such a sequence may
be substituted by the following simpler one: u=x,, x; =¢, X, =@, (0), X3 =@,(a),
xs=d, xs=v (or interchanging u with v). x; =x,(0%*) implies a=5(®), and by
A, we get ¢ =d(0); thus u=v(0) and u=v(0*), proving that ® and O* are equi-
valent on S, finishing the proof of this theorem. We proved a little more than re-
quired; we have exhibited at the same time a well-described extension of an admis-
sible congruence relation.
%k Kk 3k

Now let S be a partial algebra; the operations of S will be denoted by @ (x)
(v€Q,) and the partial operations by ¢#(x) (1€Q,,i=1,2,3); we suppose that
D(gt, S)={a"}, D(g4, )=0, D(¢4, S)={b*} and gk(@)=c*, gh@*)=d"
(a*, b*, c#, d# ¢ S). To each u the ¢f are of the type described at the beginning of
the section, thus the corresponding 7° — which now will be denoted by T, —
may be constructed. We also suppose that pu#pu’ implies T, T, .=S. Further,
let T=VT, and T the free algebra generated by T.

The congruence relation © of S is called admissible if it is admissible for any
fixed peQ, (. e. if for u€Q, the congruence g*=5*(®) holds, then c*=d*(®)).

Let ® ¢ ®(S); then there exists a unique admissible congruence relation ©’
which is minimal with respect to @ = @. Indeed, let 1 denote the set of those
p€Q, for which g*=b*(0), and define O, =OUV(O,uzu; H€QY), if ©,_, is de-

fined, set ©, = (©,_,); and ® =\ ©,. Obviously, @ is admissible and the
n=1

least admissible congruence relation = 0.
A central result of this paper is

Theorem 7. The congruence relation © of S may be extended to T if and only
if it is admissible. To every pair u,v of elements of T, there exists a uniquely deter-
mined least admissible congruence relation © such that under © (the minimal exten-
sion of ® to T) u and v are congruent.

The first assertion of the theorem is obvious from Theorems 5 and 6 and Lemma
1. The second assertion is rather involved; as a preparation we will prove Lemmas
2 and 3.

Lemma 2. Let S and T’ be as in Theorem 6. Then to every u,v €T’ there exists
a least admissible ® € @(S) such that u=v(0).

Proof. If u,v€ S and a#b(®,,) (resp. a=5b(0,,)), then O, (resp. 0,, UV )
is the least admissible congruence relation. ® may be found similarly if u, v € ¢,(S).
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If u and v are not both in S or in ¢(S) then it is pot simple to find @, We will show
how to construct @ in a typical case, the complete discussion will be left to the
reader. ' :

Let u€ S, € @,(S); i. e. v=,(x), x€S. We state ©=0,,U0,,U0, U0,,.
This © is admissible for a=5(0) and ¢=d(®). Further, u=d(®), b=a(0),
a=x(0), so u=d(0), p:(B)=p;3(@)=9,(a)(0), ¢,(a)=g¢,(x)(0); consequ-
ently u=v =@, (x)(©). Finally, we have to prove that if ® € ©@(S), ® is admissible,

and u=v(®), then ®= 0. Indeed, u=v(®) (by the proof of Theorem 6) implies
that either :

1 u=d(®%), d=g;(8)=gs(a) = 9,(a)(@%), p,(a) = 9, () (@)
or ’

2. u=c(®%), c=g¢,(@)=0;(5) =g, (D)D), ¢,(b)=p,(X)(®%),
where ®@* is the relation defined in the proof of Theorem 6.

Let us consider the first possibility. By the definition of ®* we get from the
relations of 1 the congruences u=d(P), b=a(d), a=x(®). Consequently, ©,,U
U©,, UG, =. Thus a=5b(®); hence by 4, we get c=d(®), i. e. O,,=0. So
@MU®05U®axU®¢d§@. But @—”—"@,‘dU@abU@axU@cd is ObViouS, thus in the
first case @ =& is proved. The second case may be proved in the same way, thus
the proof is finished.

Lemma 3. Let S and T be as in Theorem 7. Then to every u, vET there exists
a least admissible congruence relation © € ©(S) such that u=v(®).

Proof. Let u,v€ T=VT,, it is enough to consider the case u€ T\ S, v € T,\ S,
p#v, for the other cases were treated in Lemma 2.

There are nine cases to be distinguished; from these we pick out a typical one,
the others may be treated similarly.

Let u€ @4(S)N\S and v€g}(S), i e. u=g¢4(x), v=¢30), x,y€S. Let @
be admissible such that u=v(®). Then one of the following conditions 1—4 holds:

L u=§(x) = p§(b¥) =d*(D*), d* = c* = ¢} (a*) (D),
p1(@) = gy (B)(@*), 93 (b*) = 93 (") = ¢34 () = v(D¥)
from which we get
®i = @xﬁp U ®d#c" U ®a"b" U @bvyé q)»
2. u =4 (x) = g4 (b") =d*(®¥), dr =d" = g3 (b*)(D¥),
P3(0") = ¢3(2)(@Y), ¢3(a”) = 93(@) = g3 (1) = v (%)
from which we get
@2 = ®xb1“ U ®d}¢dv U ®b“"a" U ®a"y = (I)'.
34, u=gh(x) = gh (@) = g (@) (%), gh(a") =
= g4 (09 (D), ¢4 (by) = p{ (B = (@) =c* (DY),

further in case 3 cr=cv(@%), ' =9 (@) =" (B) =5 (BYN@Y), p3 (M) =3 ()=
=v(@*) and in case 4 ct=d"(0%), d"=3(0") =3(@)=g4(@)(@*), ¢} (@)=
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=g¢3(p)=0v(0*), and so we get respectively
®3 = ®xai‘ U (E‘)b!“al-L U ®cl‘c” U ®a"b" U ®b"y = (I)!
®4 = @x”u U ®b“ﬂ” U ®c“d" U ®bvav U ®aVy = (I,.

We prove that ® = 0] (the notation was introduced before Theorem 7). It is enough
to show that ©{ =0} for i=2, 3, 4. But (@) =0 holds for every ® ¢ ©(4), thus
it is enough to prove @,=0j (i=2,3,4).

The case i=2 is trivial because of ®1=03. (This follows from the special
choice of # and v.) Now we prove ©,=0; as follows: obviously

®xb“ = ®xaﬂ U ®bi‘a$‘ s
further . ®ducv é (@b;‘ag U @cs‘dv U @avﬁv 4 ;
thus the relation

0,=03

is obvious. The last relation @, = ®} may be proved similarly finishing the proof
of Lemma 3. v

Now we are going to prove Theorem 7. Let #, v €T, u=1p,...7,(x), v==64...8,,(»),
V5 0, €P(S), x¢D(y,, 8), y¢D(5,, S). Now we use the assumption that all the
partial operations of S are either operations (the . a)‘(x), v€Q,) or of the special
type ¢f. It follows that y, and §,, are of type o¢f.

Let T? denote the set of all elements of T which may be represented in the

form

71“'}’7:("): 71§P, xE Ss X({D(’Ym S)a ’}'19 wary ?n EP(S)~
Then S=ToCT =TCT?...
and T=UT:.

We suppose u, v €77 and prove our assertions by induction on .
The case p=1 was settled in Lemmas 2 and 3. Let us suppose that we have
proved the assertion for all k<p, The set T2\ T?-1 is the join of sets of the form

H,= Uﬂx p 17¥(S)

(« depending on 4,, ... A,_, pand ). If both # and v are in Tr-1 then the assertion
follows from the mductmn hypothesis. So we may suppose that u¢7?-1, thus
uc H, for some a.

Now we may repeat the chain of thoughts of Lemmas 2 and 3; the role of
S is taken by T2-1, that of T, by H,. The only difference is that for S the assertion
was trivial; now, for Ie-1 it is the induction hypothesis. This is essential when
we are looking for the least admissible congruence relation, nnder whose extension
-e. g. ¢* and d¥ are congruent.
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§ 2. Compactly generated lattices

Before proving Theorem I we need two easy theorems on compactly gener-.
ated lattices the first of which is probably well-known while the second is due-
to NACHBIN.

Theorem 8. Let L be a compactly generated lattice and H a complete sublat-
tice of L. Then H is also compactly generated.

Proof. A principal ideal of a compactly generated lattice is obviously com-.
pactly generated. Thus we may suppose that the unit element of H is the unit ele-
ment of L. Now let # be an arbitrary element of L, and define a() as the meet of

all AcH with h=u,
a() = A(h; he H, h=u).

H is a complete sublattice, thus a() € H; in fact a(u) is the least element of H which
is =u. It is routine to check that if # is compact in L then a(w) is compact in H..
From this the assertion follows easily.

Let F be a semilattice with O, i. e. let be defined on F a binary operation U, which
is idempotent, commutative and associative, further, x\J O =x for all x¢ F. A sub-
set I of F is called an ideal, if it is non-void and xUy€I(x, y€ F) if and only if"
x and y€ F. A natural partial ordering of Fis: x=y if and only if xUy = y; then
x Uy is the least upper bound of x and y. Now, Iis an ideal if and only if 1. x, y€I
imply xUy€l; 2. x€1, y€ F, y=x imply y €L The set I(F) of all ideals of F form_
a complete lattice if the partial ordering is the set-inclusion.

Theorem 9. (NacHpIN [101) 4 lattice L is compactly generated if and only
if L is isomorphic to the lattice of all ideals of a semilattice F with O. In fact, if L.
is compactly generated then F is isomorphic to the semilattice of all compact ele-.
ments of L. Further, the compact elements of I(F) are the principal ideals.

A sketch of the proof. Let L be the compactly generated lattice and F the se-.
milattice with zero of the compact elements of L. First, one has to prove that F is.
really a semilattice, i. e. the join of two compact elements is again compact. Then
take an @€ and define I, as the set of all x€ F with x=gq. The correspondence:
a—1I, is an isomorphism between L and I(F). The only non-trivial step is to prove-
that if I is an ideal of F and a=V(x; x€1), where the complete join is in L, then
I,=1I Indeed, if y€l,, then p=V{x; xcI). Thus by the compactness of y we get.
the existence of a finite subset I’ of f such that y=V(x; x€I), i. e. y€I. We proved.
I,E7 while IS, is trivial, thus 7=1, as required.

§ 3. A characterization theorem

Now we are ready to prove Theorem L

Theorem 10. A lattice L is compactly generated if and only if there exists:
an abstract algebra A such that L is isomorphic to ©(4).

Proof. It is known that ©(4) is compactly generated (e. g. it follows easily
from Theorem §). :
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Now suppose that L is a compactly generated lattice with more than 2 ele-
ments, Then there exists a semilattice F such that L is isomorphic to 7(F). By using
-this fact, we construct first a partial algebra B with @(B)= L.

The elements of B are the finite subsets of F\{O}. The void set is also an
-element of B if we identify it with the element O of F. Therefore, it will be denoted
by 0. We define operations and partial operations on B (v and A denote the set
theoretical union and intersection, i. e. the operations of B; U denotes the only
-operation of F):

1. to every u€B let be assigned two operations

@u(x) = uVx and ¥, (x) = upx,

2. to any a, b, c€B with ¢=aUb let a partial operation o, (x) be defined,
‘whose domain is O and {a, b}: let 0,,.(0)=0, a,({a, b})={c}.

We assert that ©@(B)=I(F). First observe that B is a generalized Boolean
.algebra endowed with the partial operations o,,.(x); in fact, the join and meet
-operation of B was given in such a way that one variable was fixed. Thus every
-congruence relation © is completely determined by I(©)={x; x=0(©)}. Every
-element of B is a finite join of atoms, thus /(@) is completely determined by 1{®},
the set of atoms contained in J(®). The elements of 7{®} are of the form {a}, where
vael{F, iLet I{®} denote a subset of F consisting of 0 and of all a for which {a}€
cI{®}.
: We prove that @ ~J{@} is an isomorphism between @(B) and I(F).

- First we prove that 7{®} is an ideal of F. If a, b€ I{®} then {a} and {5} ¢ I{0©},
‘thus {d, b} €l (9)' But appiying %g 5 ayp WE get a5, aub ({Q‘, b }) Eg,p, an(O)(®}9 i.e
{aUb} €I(®) and so aUbel{®}. On the other hand, if c=ag€cl{0}, then {a}€

€1{®}; thus {a}=0 () and then a,, ({a})=0,,.(0)(O) i. e. {¢} =0(®) and we
teached c€I{®}, as required.

Now let 7€1(F), we prove that there exists a © € @(B) such that /=1{0®}.
‘On defining © it is enough to give a criteria for an element x of B to be congruent
‘to 0. This is the following: let x =0 (©) if and only if x =0 or x is the join of atoms
%} such that ¢€/. It is routine to check that © is a congruence relation and
H{®}=1

}Thus ©~I{@®} is a one-to-one order preserving correspondence between
‘®(B) and I{F), so this is an isomorphism.

To make possible the application of the results developed so far we change
B to B'. This new partial algebra B’ is essentially the same as B only every oper-
ation o, (x) is replaced by three operations: of, (x) (i=1,2,3). Let

D(a}:bca Bf):{{a> b}}? D(afbc, B’):as D(@jbc, BI)::{O}’
-and 06;53({a, bY)={c}, w(0)=0.

Obviously, B’ has more congruence relations than B had, but using the notion
.of admissible congruence relations, as defined before Theorem 7, we see that a
-congruence relation ® of B is a congruence relation of B if and only if it is admis-
sible.
Now we apply the construction of Theorem 7 (we may do so, for every partial
_-operation of B’ is either an operation, or one of the type ¢¥, i=1,2,3, pc,;
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here Q, is the set of all triples g, b, ¢ of F, for which ¢=qUb), leading to an al-

gebra B, (which was T in Theorem 7). Now, according to Theorem 7, every ad-
missible congruence relation ® of B’ may be extended to a congruence relation
© of By; further, to every pair u, v of elements of B,, there exists a smallest admis-
sible congruence relation ©, such that u=v(®). Denoting by @ the smallest ad-
missible congruence relation =®, it is obvious that @ =0/, ., with a suitable
a(u,v)€B". But Oy, y0=0,4,,y0 (this is perhaps the most important property
of B’!) thus we can associate with @ an element a(y, v) of B. If we require that
a(u, v) be an atom, then it is uniquely determined.

Now we define for every u, v€B, three partial operations oi,(x), such that

Dy, B)={u}, D(@%, B)=0, D(z,, B)={1},
and () =alu, v), oo(v)=0.

If we consider B, together with these new partial operations, we get Bi.

We assert that a congruence relation © of B, is admissible if and only if it
is the extension of an admissible congruence relation of B'.

First, let @ be an admissible congruence relation of B,, and let © denote the
congruence relation of B’ which is induced by @ (i. e. x=y(0), x, y¢ B if and
only if x=y(®)). Let u=0v(®), u,v€Bi. ® is admissible, so a(y, v)=0(®); thus
a(u, v) =0(0®). We get that in B’ the relation @, ,,0=© holds true. By definition

u= v(ga(u, v;())&
thus - u=0(0),

and we see that ® =®. On the other band, if ®=0 with a suitable ® < O(B"),
and u=v(®), then O, ,,o=0 by the definition of a(y, v), and so a(u, v) =0(D);
i. e, @ is admissible.

Now, we construct from Bi an algebra B, by the method of Theorem 7, and
proceeding so we get B;, B;, ... and so on.

We have constructed an ascending sequence (of type w) of algebras

BcBcB,c..
Let 4 be the union of these:
A:“UBi*
i=1

4 is obviously an algebra. Every admissible congruence relation of B may be ex-
tended to B, from B, to B, and so forth to 4. We assert that 4 has no other cong-
ruence relation. Of course, a congruence relation @ of A4 induces a congruence
relation @, of B, (n=1, 2, ...). But @, may be extended to B,,, (in fact, ®, ., is
such an extension), thus — as we have proved above — @ is an extension of an
admissible congruence relation of B’. Thus ©@(4) is isomorphic to the lattice of
all admissible congruence relations of B, which is isomorphic to L, completin

the proof of Theorem 10. ‘

A4
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§ 4. Applications

In this section we will draw some conclusions from Theorem 10.

Corollary 1. To every finite lattice L, there corresponds an abstract algebra
A such that L= 0O(4).

More generally:

Corollary 2. Let L be a lattice with zero element and satisfying the ascending
chain condition.*) Then there exists an abstract algebra A with L= @(4).

The assertion of Corollary 2 is obvious from Theorem 10, for if L satisfies
the hypotheses of Corollary 2, then every ideal of L is a principal one, thus L= I(L);
Theorem 10 gives an algebra 4 with ©(4)=I(L); hence we get L= @(4), as as-
serted.

Corollary 3. A4 lattice L has a complete representation if and only if L is com-
pactly generated.

This is now obvious, for &(H) (see the notation in §2 of the Introduction)
is compactly generated and by Theorem 8 every complete sublattice of a com-
pactly generated lattice is itself compactly generated. Thus if L has a complete
representation {F, H) then the sublattice of &(H) formed by the F(x), x€L is com-
pactly generated and so is L. Conversely, if L is compactly generated, then by The-
orem 10 there exists an algebra 4 with L= 0(4); let ¢:x >x¢p € O(4) be this iso-
morphism. If (F, 4) is the natural (complete) representation of @(4) (see §2 of
Introduction) then (Fg, A) is a complete representation of L, where Fp denotes
the product of the mappings F and ¢.

Corollary 4. (WaHITMAN [11}) Every lattice has a representation.
® % ok

We get an other type of application if we consider the special properties of
the algebra A4, constructed in the proof of Theorem 10.

In our paper [6] we have proved the following theorem:

To every abstract algebra C there exists an abstract algebra D such that
©(C)= O(D) and every compact congruence relation of D is of the form .

The question arises whether or not it is possible to choose such a D where
the element @ may be fixed. An answer is given in

Corollary 5. To every abstract algebra C there exisis an abstract algebra
D and a fixed element o of D such that ©(C)= ©(D), and every compact congruence
relation of D is of the form O, {acD).

Let L=0©(C) and D=4, where A, is the algebra constructed in Theorem 10
if we start with L. Then 4 ==D has the property stated with 0=0. The easy proof
is left to the reader.

Let G(4) denote the automorphism group of A. The question arises what
relation has the structure of G(4) to ©(4). We will prove that already the simplest
G(4) allows ©(4) to be arbitrary.

*} This means that if x,, x2, ... are elements of L such that x;=x,= ..., then there exists
an integer » such that X, =Xp+1= ....
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Corollary 6. The algebra A constructed in § 3 has a trivial automorphism
group, I. e. G{A)=1.

Proof. The reader should remember that there is a subset B’ of 4 such that
B’ generates 4; there is an operation ¢, which is the identity operation on B, i. e.
@o(x)=x for all xcB’. But if x ¢ B’, then by free generation ¢, (x) #x; thus

(i) x¢B if and only if @y(x)=x, where ¢, is a fixed operation of 4 and B’
is a generating system of A, ‘

Suppose a€G(4) and x€B then ¢o(ax)=ap,(x)=ax and thus by (i) we
get ax € B’. On the other hand if x€4 and ax€B’ then x = a~Y(ax)€B’. We get
the following result:

(i) o (restricted to B’) is an automorphism of B,

By free generation this implies

(iii) the automorphism groups of B’ and 4 are isomorphic.

B’ is a generating system of the whole 4; it follows that if « # B are automorph-
isms of A then their restrictions to B are different automorphisms of B'; we con-
clude:

@iv) if G(B)=1 then G(A)=1.

Thus Corollary 6 is proved if G(B)=1.

Now suppose G(B)s#1, i. e. a€ G(B'), x¢ B and ax#x. It is no restriction
tosuppose xis an atom. Obviously, thereexistin B; elements u, v such that
a(u, v)=x, i. e. there is a partial operation # of Bi which is defined only at u and
B(u)=x. This implies a(B(w))=p), i. e. Plou)=pw), thus auu and f(ou)=
=ax€B. But f{a) is in B’ if and only if ¢=u or a=v thus au—=v, and we reach
xx =0, a contradiction.

k % ok

Finally we mention

Corollary 7. A complete lattice L has a complete subgroup representation
if and only if L is compactly generated.

An application of Corollary 3 shows that it is enough to prove that &(H),
the lattice of all equivalence relations of 4, has a complete subgroup represen-
tation. It is a result of G. BIRKHOFF that & (H) has a subgroup representation (see
[11], where the proof is reproduced). But his proof gives, in fact, a complete sub-
group representation of &(H), as may be easily checked. Thus Corollary 7 is pro-
ved.

CHAPTER III
ABSTRACT ALGEBRAS OF TYPE 2 AND 3

§ 1. Preliminary results

If we want to prove Theorems II” and III” then it is not enough to have the
theory of free algebras developed only for algebras with unitary operations, There-
fore we now formulate these results for arbitrary algebras.

Let $ be a partial algebra and ¢ € P(S). D(gp, S) denotes the n-tuples (a,,...,a,)
for which ¢ is defined. We assigne to every m-tuple (uy, ..., #,)§D(g, S) a new
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element X, . ., such that if (u,, ..., %)% (v, ...,v,) then X, . oun E Xy, e
S{g] denotes the ‘set § together with the new elements We define operanons on

1. ¥(ay, ..., a,) is defined for a Y=g if and only if (ay, ..., @) €D, S).
2. ¢(ay, .-.» a,) is unchanged if (aq, .. ,a,,)eD(qJ,S), if all the g,€8 but
{ay, .os ) éD(ga, S) then ¢(ay,....,a)=X,, . ,; for other n-tuples ¢ is not
defined.

Now construct S[e] for all p € P(S) such that if ¢y then S[p]A SY] =

define S; =V (SIgl; 9 €P(S)), S,=V(S:[¢]; p€P(S)) and so on and S= V S,. ;
The same proof as those of Theorem 3, 4, 5 applies to get the following result

Theorem 11. § is the free algebra generated by S. Every congruence relation
of S may be extended to S.

* % %

Let S be a partial algebra, whose partial operations are either operations
w*(xy, .. ,x,,) (v€SYy) or of the type g#(x): i=1,2,3, p€Q, and D(¢¥%, S)={a*},
D(¢#, S)=0, D(¢4, S)={b*}. The congruence relatlon © is called admissible
if for every .uenz, a“——b“(@) implies ¢#(a*) = p4(b*) (O).

Theorem 12. [ S may be extended to an algebra S* such that a congruence
relation © of S may be extended to a congruence relation ® of S* if and only if ©
is admissible. Further, if ® is a congruence relation of S* then there exists an ad-
mtsszble congruence relation © of S such that ®=0. Finally, the relations @} (b*) =

Qi (%), @E(a®) = i@, ncQ, hold true in S'.

* K %

We need also a new form of the result of our paper [6].

Theorem 13. Every abstract algebra A may be extended to an abstract al-
gebra A, such that
L every congruence relation ©® of A may be extended to a congruence relation
O of 4y

2. @~ @ is an isomorphism between ©(A) and ©(4,) i. e. to every ®€O(4;)

there exists a © ¢ ©(4) such that ®=0;
3. every compact congruence relation of Ay is minimal;
4. if a, b, c,dEA then there exists e, f, g€ A, such that Oy =0, ©,=0,,
ab U ®cd - @

Remark. Conditions 1 and 2 mean that &(4) and ©(4,) are isomorphic
in the natural way.

The theorem stated in [6] is weaker than our Theorem 13, but we actually
proved Theorem 13 for algebras with unitary operations; a slight modification
of the construction of [6] gives the result of Theorem 13.5)

5) In [6] we used the fact that the algebra has only unitary operations only at the step, when
we constructed 4; from 4, in § 3. If 4 has operations f of more than one variable, then we define
its extension on A; as follows: fla1, ..., @) =f(b1, b2,...,b,) where a;==b;, if a;c4, bi=a
otherwise. One can easily that with this definition one can carry out the proof of the theorem.
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§ 2. Abstract algebras of type 3

We will prove the following theorem:

Theorem 14. To every abstract algebra A there corresponds an abstract al-
gebra B such that the following conditions are satisfied:

1. B is an extension of A;

_ 2. every congruence relation ©® of A may be extended to a congruence relation
® of B; _

3. ©—~ 0 sets up an isomorphism between ©(4) and O(B);

4. B is of type 3;

5. every compact congruence relation of B is minimal,

Remark. Conditions 2 and 3 mean that @(4) and O(B) are 1somorph1c in
the natural way.

One can see that Theorem 14 contains Theorem II” of § 3 of the Introduction,
Further, according to Theorem 10, for every compactly generated lattice L there
exists an algebra 4 with L= ®(4). Now if we construct the algebra B of Theorem
14 corresponding to this algebra A4, then we get that there exists an algebra B with
L=0®(B) and B is of type 3. Summing up we get the following,

Corollary. The following conditions on a lattice L are equivalent:

1. L is compactly generated;

2. L has a complete representation;

3. L has a complete representation of type 3;

4, there exists an abstract algebra A with L= ®(4);

S. there exists an abstract algebra A of type 3 with L= ©(4).

Now we are going to prove Theorem 14, We start with the algebra 4d,=4
and we extend A, to 4} according to Theorem 13. Let x, y, u, v€ 4} such that
x=y(0,,); then we define three partial operations ¢, p,, p; on 4}:

D(@l B A(I)) = {u}s D(sz s Aé) =, D((PS s A(l)) = {i}}

and @, (W)=x, p3(v)=y. Let A} be defined as the partial algebra which we get
if the @, are defined on 4§ for every quadruple x, y, u, v(x =y(0,,)).

Every congruence relation of 43 is admissible; it further satisfies all the as-
sumptions we have made in Theorem 12, therefore we can extend 43 to an algebra:
Ay, such that 4, already satisfies conditions 1, 2, 3 of Theorem 14. Now we con-
struct 4, from A4,, 4, from A4,, and so on, in the same way as 4; has been con-
structed from A4,, The algebras Aq, 4, ... form an ascending chain, therefore

B= V A1 is an algebra. Since all the 4; satisfy 1, 2, 3, and 5 of Theorem 14, there-

fore so does B. It remains only to verify condition 4. Let x =y(@ U ®), then there
exist compact congruence relations O, =® and ®, =® such that x=y(@, Ud,).
By condition 5 ©; =0, and ®, =0, with suitable elements a, b, ¢, d of B. There
exists an integer n with x, y, a, b, ¢, d€ 4,. By condition 4 of Theorem 13, there
exist elements e, f; g of A} such that © ,,»-@ef, 0,4=0, and 0,U0, = O,.
Thus x=y(0,,). Therefore A2 has operations ¢;, @,, @3 such that ¢(e)=x,

91(8)=72(2), P2()=p3(0), Ps(8)=1.9) Then zo=x, z; =0 (f), 2= @3 (f),

6} See the construction in § 1 of Ch. II and Theorem 12.
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z3=@3(f), za=y is a sequence of elements such that z,=2(0,), z; =2,(0,y),
2, =23(0,), 23=24(0,). Indeed, e=f(0,) (for 0,=0,), thus z,=g¢,(e)=
=@,(f)=2,(0). Similarly, z; =@,(f)=¢,(g)(0.) (for Oy =0,) and ¢,(g)=
= @2 (8) = 92 (f) =2,(0,,) thus z;=2z,(0®,), and so on.

To sum up, whenever x=y(@U®) (x,y€4, O, ®cO(4)) we can find ele-
ments x=z,, Z;, 25, Z3, 24 =y such that z, =2,(8), z, =2, (D), z, =z,(0), z; = z4(D)
{we take into consideration that 0,=0,=0, O, ,=0,=0), wihch is the defi-
nition of algebra of type 3, Thus condition 4 of Theorem 14 is also verified.

§ 3. Abstract algebras of type 2

" The analogue of Theorem 14 for modular lattices is the following:

Theorem 15. Let 4 be an abstract algebra such that ©(A) is modular. Then
there exists an abstract algebra B such that the following conditions are satisfied:

1. B is an extension of A;
2. every congruence relation © of A may be extended to a congruence relation
® of B,

3. © > 0O sets up an isomorphism between O(A) and ©(B);

4. B is of type 2;

5. every compact congruence relation of B is minimal.

Remark. Conditions 2 and 3 mean that ©(4) and ©@(B) are isomorphic in
the natural way.

Of course in Theorem 15 the essential conditions are that @(4)= @(B) and
that B is of type 2.

Again, combining Theorem 15 with Theorem 10 we get the

Corollary. The following conditions on a lattice L are equivalent:

1. L is compactly generated and modular;

2. L has a complete representation of type 2;

3. there exists an abstract algebra A of type 2 such that L= ©(4).

For the Corollary the only thing we must verify is that condition 2 implies
condition 1; it is enough to prove that if L has a representation of type 2 then L
is modular; this is a theorem of [8]7.

For the proof of Theorem 15 we need some preliminary results, The proof
of Theorem 15 will be given after Theorem 18.

The crucial point of the proof of Theorem 14 was the following: we can prove
that B is of type 3 because the construction given at the beginning of § 1 of Chapter
II and which is perfomed in the construction of B several times gives rise to a se-
quence of elements which guarantee that B is of type 3. In the construction in ques-

7) For completeness’ sake we prove this. Let L have a representation {F, 4> of type 2,
a, b, ceL, a=c. Then aN (b Uc)=(a b)Uc holds always, hence it is enough to prove that
2. g€ A. p=gFaNGBUc)) imply p=qg (F{la N b Uc)). Indeed, if p=qg(FlaNbUc))) then
p=g(F@NFGUc), thus p=gF@GBUc) and p=g(F(a)). We have a representation of
type 2, thus p=q(F(b U c)) implies the existence of r and s such that p=r(F(c)), r=s(FE),
s=q(F(c)). Then c=gq implies that r=p=g=s (Fla)), thus r=s(FleNd)). We get
r=q(Flalb) U F(e)) that is p=g(F((aN b) U ), which was to be proved.
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tion we start from a partial algebra S and we take three further copies of S, and
we identify some ¢lements. One can easily seen that if we want to get an algebra
of type 2 then we must reduce the number of new copies of S to 2. This is the main
difficulty. Of course, the analogue of Theorem 6 for this modified construction
may be proved easily, but Theorem 7 is already not true. We have to introduce
some pew operations — using the modu-
larity of ®(4) ~— to enforce the existence
of the least admissible congruence rela-
tion, the existence of which is the main
statement of Theorem 7.

So first we modify the construction
of § 1 of Chapter II. Let S be a partial al-
gebra, 9,(x), @x(x) €P(S), D(p4, S)={a},
D(g,, S)=1{b}, gi(@)=¢c, p(a)=d. We
identify in S[g]U S[g,] the elements
(b)) and p,(b) (see Fig. 3), getting the
partial algebra 77. The congruence relation
® of S is called admissible again if either
a%xb(®) or if a=»h(®) and c=d(0) (. e.
if a=b(0) ,.implies” ¢=d(O)). Then

Theorem 16. The congruence rela-
tion ©® of S is admissible if and only if it
may be extended to T'. The minimal ex- Fig. 3
tension ® of © is the transitive extension
of ©*, where OF is identical with ® on S, and @{x)=ey)(O%), ifand only if
x=p(0) (x, y€ S). The relations @ and © are identical on S, on ¢,{(S) and on @,(S).

Proof. Copy the proof of Theorem 6.

Now we want to see what can be said about the congruence relation ® of S

for which u=v(®), with u, v€ T’ fixed. To do this we make three assumptions on
S:1. ©(S) is modular, 2, the compact congruence relations of S are minimal;
3. every congruence relation of S is admissible. We distinguish several cases.

A. u,v€S. Obviously®), ®=0;, is the smallest admissible congruence re-
lation for which u=v(0®),

B. #€S, 0€ g (S), i. e. v=p(x), x€S. Let © be admissible, #=v(6). Then
either
@ u=c(®), a=x(0),

or &) u=d(®), a=b(0®), b=x(0).
Thus the two congruences

9, = ®ucU®ax’ 0, = ®udU®abU®bx

8} The reader should remember that if @ is a congruence relation of § then ® denotes the
Ieast admissible congruence relation =8 (see the text of § 1 of Chapter II, before Theorem 7).
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have the property that either ®@{ =0 or ©;=0. If we prove @1 =03, then we
are through. Indeed, a= x(0,U @,,), thus O, =0;; further a=5(O,), thus
c=d(02); we get 0,=0,U0,=0;. Hence ©,=0;, so 0]{=(0;)=03,
q. e. d.

C. uc S, v€p,(S). Proof as in case B.

D. u,0€p(S), i. e. u=,(x), v=p,(»), x, y€S. Then u=v(0)implies either

(@ x=y(0),
or ®) x=a(®), c=d(©), a=b(®), b=y(O),
or (© y=a(®), c=d(®), a=b(®), b=x(O).

This shows that, obviously, ® =@y, is the smallest admissible congruence relation
under which u#=v(0).

E. u,v€@,(S). Proof as in case D.

We see that the three conditions imposed on S have not yet been used.

F. uc@i(S), vep,(S) i. e. u=gp(x), v=¢,(»), x, €S (or symmetrically,

interchanging u and v). If u=v(®), then either
(@ x=b(0©), y=5(0),
or (b)) x=a(®), c=d(©®), a=y(0).

Let @, = 0,,U0,, 6, =0,U0,U0,,. Then, if any, ®; or ©; should be
the smallest admissible congruence relation © such that u=v(®). But it turns out
that neither ®1 =03 nor ©;=0] hold in general. Now we use conditions 1—3.

Let ©; = 0,,U0,,. Then @, U0, = @, UO; and ©,;=0,. Thus by the
modularity of ©(S) we get

®2 = ®zm(®1U®3) = (@20@1)U®3.

©, and ©; are compact congruence relations, therefore we can finda @, =0, 0,
such that @4 is compact and ©,U ®; =0,. Because of 0,,=0,1 0, we may
choose ©4 such that ©,,=0, is true.

Every compact congruence relation is minimal, therefore ©,=0,, (c,f€S).
Of course, e and f are not uniquely determined by # and »; already ®, is not uni-
que, but if it were, we could, in general, choose several ¢ and f. But let us fix a pair
e, f; we may write e=e(u,v), f=f(u,v).

Suppose that to every u€ ¢,(S), v€@,(S) we have found e and f. Then we
assign to every u, v a new pair of partial operations «,(x) and a,(x) such that

D(dls T/)={8}9 D(“Z’ T,)={f}a ocl(e)=u, 0‘2(/):”-
Let 77 denote the partial algebra T° endowed with these new operations.

Theorem 17. T” is an extension of S. A congruence relation of S may be ex-
tended to T” if and only if it is admissible. To every u,v< T" there exists a least ad-

missible congruence relation ® of S such that uEv(@).

Proof. Let ¥ be an admissible congruence relation of S. It is in general not
true that W (the extension of ¥ to T) is a congruence relation of 7”. The extend-
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ability of ¥ to T” means that extending ¥ to 7 we do not get new congruence re--
lations in S. The extension W of ¥ to T"may be defined as the transitive extension
of W*, where W* is a relation equivalent to ¥ on S, ¢;(x)=¢;(3) (¥*) (x, y€S)
if and only if x=y(¥), and u= qsl(x) 992Cy)~v(‘1‘*) if and only if ©,,=%¥
(e=e(u, v), f=1(u, v)).

We have the following remark: let u=g;(x) (i=1 or 2) v=g,(y) (j=1 or 2).
and u=v(¥*). Then x =y(¥). Indeed, if i==j, then this is true by definition. If i)
then ©,,=W. But e and f were chosen so that 0,,=0,. Thus 0,,=Y¥ is obvi-
ous. The transitive extension W, of ¥* gives rise to new congruences in S if and
only if c=d(¥;) while ¢z d(¥). We prove that this is impossible. Indeed ¢ =d(\¥,)
means the existence of a sequence c=zy, zy, ..., 2,==d, all the z; being in ¢,(S)v
V @,(8), such that z; , = z,(¥*), i=1,2, ..., n Let z;=g;(u;) where j is either
1 or 2. Then by the remark of the last but one paragraph we have u,=u,(¥),
uy = (P), s th—y = 4, (¥) i e wo=u, (¥). But gy(uo)=c, p,(u,)=d; thus
Uy =a, U, -—b and we have a=5h(¥). Now we use that ¥ is admissible, therefore:
czd(‘I‘), contrary to the hypothesis. Q. e. d,

Now we generalize Theorem 17,

Theorem 18, Let S be a partzal abstract algebra with the following properties:
the partial operations of S are g(x), i=1, 2 p€Q, where D(¢p¥, S)={a*}, D(¢%,S) =
——{b"} g4 (a9 =c*, pi(a*)=d"; all otker partial operations of S are operations;
if ©® is a compact congruence relatzon then so is®y @'; every compact congruence
relation of . S is minimal; the admissible congruence relatwns of S form a modular
lattice'9).

Then there exists an abstract algebra S* such that

1. 8% is an extension of S; ;

1. every admissible congruence relation ©® of S may be extended to a congru~

ence relation © of §*;

IIl. ©® ~© is an isomorphism between the lattice of admissible congruence re-
lations of S and ©(S*).

Proof. Copy the proof of Theorem 7 and use the construction of Theorem.
18 rather than that of Theorem 6.

Now we are ready to prove Theorem 15, We apply the same procedure as in
the proof of Theorem 14, the only difference is that we use Theorem 18 rather than
Theorem 16. The algebra B will be of type 2 because the construction given before-
Theorem 16 uses only two new copies of S, therefore whenever x=y (0U®) we
can find a sequence x =z,, 2y, z,, z; =y such that z, =z(0), z; =2, (D), z, =2,(O)..
The construction of the z; is also the same as in the proof of Theorem 14.

9) @ denotes the least admissible congruence relation =®. Now a congruence relation
@ is admissible if for every p¢£2 the relations a# = br(®D), c#t=du(D) are equivalent.

19) The admissible congruence relations of § always form a complete lattice, which is in
general not a sublattice of ©(S).
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§ 4. Problems

The first main result of this paper is that to every compactly generated lattice
L there exists an abstract algebra 4 such that Lz ©(4). But the algebra 4 which
is constructed in the proof is pathological. Therefore the problem arises as to whe-
‘ther or not it is possible to construct an 4 which belongs to certain known classes.

Problem 1. Is it true that to every compactly generated lattice there conesponds
an abstract algebra A such that L= ©(A4) and every operation of A4 is binary and
.assoticative (A is a superposition of semigroups)? Or the same problem, requiring
A to be a semi-group.

In other words, characterize the congruence lattices of semigroups.
* ® %

If L is finite the construction used gives rise to a countable A.

Problem 2. Is it possible to represent every finite lattice in the Jorm ©(A),
‘where A is a finite abstract algebra?

This problem seems to be an extremely difficult one. Its solution should imply
an answer in affirmative to Problem 48 of [1] asking whether or not every finite
lattice is embeddable in a finite partition lattice. A variant of our Problem 2, the
solution of which does not imply the solution of BIRKHOFF's problem, is the fol-
- Towing.

Problem 2°. Ler N, be the class of all (finite) lattices which may be repre-
sented as ©(A), where 4 is a finite abstract algebra; let ¥, be the class of all (fi-
nite) lattices which may be represented as sublattices of finite partition lattices. Is
WU, =M, true?

® % k

Let %, be the class of all compactly generated lattices, % the class of all lat-
tices which are isomorphic to the lattice of all subgroups of a group, ¢ the class
of lattices which are isomorphic to a complete sublattice of a lattice from U; si-
milarly let Ay be the class of lattices which are isomorphic to the lattice of all sub-
rings of a ring and X the class of lattices which are complete sublattices of a lat-
tice from . The relations A, 2 ACand A, 2 AR are trivial. We have proved A, =NE,

Problem 3. Find the proper relations between U (=A%), ¢, Ax and AR,

Are all identical?
L

In this paper we have completed the argument of [6] to show that every abs-
tract algebra 4 may be.extended to an abstract algebra B such that ©(4)= 6(B)
.and every compact congruence relation of B is of the form ©,. And we proved
that for every abstract algebra A there exists an abstract algebra B such that
O(A)=0O(B), and every compact congruence relation of B is of the form @,
‘where o is a fixed element of B, Can these two results be combined?

Problem 4.'*) Prove that every abstract algebra can be extended to an abstract

1) Added in proof (May 9, 1963): We have proved the following result.

Theorem. Every algebra A can be extented to an algebra B such that ©{A) and O(B) are
dsomorphic in the natural way, further, any compact congruence relation © is of the form G,
where o is an arbitrary element of B {(a depending on © and o).
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algebra B such that every compact congruence relation of B is of the form ©,,, where
o is @ fixed element of B, «
I S
The two main results of Chapter III may be formulated as follows: If L is
compactly genezated and L has a representation of type i(i=2, 3) then L= ©(4)
where A4 is of type 7. We could not prove (or disprove) the similar result for i=1.
It is the following:

Problem 5. Prove that te every compactly generated laitice L which has a
representation of type 1, there exists an abstract algebra A such that L= ©(4) and
any two congruence reiatzons of A are permutable (i. e. if x=y(0), y=z(®) then
there exists a w such that x=w(®), w=z(0)).

¥ k%

G. BiIrxHOFF has proved that to every group G there corresponds an abstract
algebra 4 such that G is isomorphic to the group of all automorphisms of 4. Lét
A be an abstract algebra; we assigne to 4 a couple (G¥, LD), where G0 is the
automorphism group of 4 and L™ the congruence lattice of 4. BIRKHOFF'S re-
sult states that every G occurs in the first place in a couple (7, L). We have proved
that a lattice L occurs in the second place if and only if it is compactly generated.
And what is more, we showed that if this is the case, then L already occurs in a
couple (1, L) where 1 denotes the group of one element. These results suggest
that the first and second components of a couple are independent. More precisely:

Problem 6. Let G be an arbitrary group and L a compactly generated lattice.
Prove that there exists an abstract algebra such that (G0, LY is identical with
(G, L).
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