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Abstract. We call a lattice L isoform, if for any congruence relation Θ of L,
all congruence classes of Θ are isomorphic sublattices. In an earlier paper, we
proved that for every finite distributive lattice D, there exists a finite isoform
lattice L such that the congruence lattice of L is isomorphic to D.

In this paper, we prove a much stronger result: Every finite lattice has a
congruence-preserving extension to a finite isoform lattice.

1. Introduction

Let L be a lattice. We call a congruence relation Θ of L uniform, if any two
congruence classes of Θ are of the same size (cardinality). Let us call the lattice
L uniform, if all congruences of L are uniform. The following representation result
was proved in G. Grätzer, E. T. Schmidt, and K. Thomsen [7]:
Theorem. Every finite distributive lattice D can be represented as the congruence
lattice of a finite uniform lattice L.

We introduced a much stronger concept in [6]. Let L be a lattice. We call a con-
gruence relation Θ of L isoform, if any two congruence classes of Θ are isomorphic
(as lattices). Let us call the lattice L isoform, if all congruences of L are isoform.
Theorem. Every finite distributive lattice D can be represented as the congruence
lattice of a finite isoform lattice L.

Anytime we prove a representation theorem such as the two theorems quoted
above, we raise the question whether a stronger form is available:

Does every finite lattice have a congruence-preserving extension into a finite uni-
form/isoform lattice?

This was raised for uniform lattices as Problem 1 in [7] and for isoform lattices
as Problem 2 in [6]. (See also Problem 9 in G. Grätzer and E. T. Schmidt [5].)

In this paper, we answer these problems in the affirmative:
Theorem 1. Every finite lattice K has a congruence-preserving extension to a
finite isoform lattice L.

Date: February 26, 2004.
2000 Mathematics Subject Classification. Primary: 06B10; Secondary: 06B15.
Key words and phrases. Congruence lattice, congruence-preserving extension, isoform, uni-

form.
The research of the first author was supported by the NSERC of Canada.
The research of the second author was supported by the NSERC of Canada.
The research of the third author was supported by the Hungarian National Foundation for

Scientific Research, under Grant Numbers T034137 and T043671.

1
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This result is trivial for a finite modular lattice K. Indeed, K is the subdi-
rect product of simple lattices. The direct product L of these lattices is an iso-
form, congruence-preserving extension of K. To generalize this to an arbitrary
finite lattice K, we can again represent K as the subdirect product of subdirectly
irreducible—no longer simple—lattices. We embed each subdirectly irreducible
factor into a special kind of simple lattice, and their direct product is the “cubic
extension” S, as discussed in Section 2. Every congruence of K extends to the cu-
bic extension, but S has many more congruences. The crucial step is a redefinition
of the partial ordering of the cubic extension in Section 3. The poset we obtain
happens to be a lattice L, as verified in Section 4. We compute the congruences of
L in Section 5, and verify that L is isoform in Section 6. The proof of Theorem 1
readily follows in Section 7.

In Section 8, we follow the steps of the construction with the smallest nontrivial
example.

Finally, in Section 9, we discuss various topics. First, we give two additional
properties that the lattice L we construct for Theorem 1 automatically has and
add one more property that the lattice L we construct for Theorem 1 shall have
if we tweak the construction slightly. The properties are: regularity, congruence
permutability, and deterministic; see Sections 9.1–9.4.

In Section 9.5, we argue the use of cubic extensions in Section 2 as opposed to
the rectangular extension of G. Grätzer and E. T. Schmidt [4].

In G. Grätzer and E. T. Schmidt [6], we introduced the concept of pruning a
poset. Our construction in this paper is based on pruning. In Section 9.6, we
explain why pruning is used only implicitly in this paper.

The congruence classes in an isoform lattice are isomorphic but not in any natural
fashion. In Section 9.7, we propose a definition of “naturally isoform” lattices, and
we show that Theorem 1 cannot be strengthened to natural isomorphism.

Some open problems are listed in Section 9.8.
For the background of this result, we refer the reader to our survey paper [5].

For the basic concepts and notation, see [1].

2. Cubic extensions

Let K be a finite lattice. For every meet-irreducible congruence Φ of K (in
formula, Φ ∈ M(ConK)), we form the quotient lattice K/Φ, and extend it to a
finite simple lattice SΦ with zero 0Φ and unit 1Φ. Such extensions are easy to
construct; see the Lemma 7 and the discussion following it in [3].

Let S be the direct product of the SΦ, Φ ∈ M(ConK):

S =
∏

(SΦ | Φ ∈ M(ConK)).

For a ∈ K, define the vector (D stands for diagonal):

D(a) = 〈a/Φ | Φ ∈ M(ConK)〉.
K has a natural (diagonal) embedding into S by

ψ : a �→ D(a), for a ∈ K.

For a congruence Θ of K, let Θψ denote the corresponding congruence of Kψ.
By identifying a with D(a), for a ∈ K, we can view S as an extension of K; we call
S a cubic extension of K.
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The following result is a special case of Lemma 9 in [3]; we restate and reprove
the result.

Theorem 2. Let K be a finite lattice and let S be a cubic extension of K. Then
K (= Kψ) has the Congruence Extension Property in S.

Note. Recall that this means that every congruence of K = Kψ extends to S.

Proof. For Ω ∈ ConK and Φ ∈ M(ConK), define the congruence Γ(Ω,Φ) on SΦ

as follows:

Γ(Ω,Φ) =

{
ω, if Ω ≤ Φ,

ι, if Ω � Φ;

and define
Γ(Ω) = 〈Γ(Ω,Φ) | Φ ∈ M(ConK)〉,

which uniquely describes a congruence of S.
We show that Γ(Ω) is an extension of Ωψ to S:

uψ ≡ vψ (Ωψ) in Kψ iff uψ ≡ vψ (Γ(Ω)) in S, for all u, v ∈ K.

Assume that uψ ≡ vψ (Ωψ) in Kψ. Then u ≡ v (Ω) in K, by the definition of
uψ, vψ, Kψ, and Ωψ. The congruence u ≡ v (Ω) implies that u ≡ v (Φ), for
all Φ ∈ M(ConK) satisfying Ω ≤ Φ, that is, u/Φ = v/Φ, for all Φ ∈ M(ConK)
satisfying Ω ≤ Φ. This, in turn, can be written as

u/Φ ≡ v/Φ (Γ(Ω,Φ)), for all Φ ∈ M(ConK) satisfying Ω ≤ Φ,

since, by definition, ΩΦ = ω, for Ω ≤ Φ.
By definition, ΩΦ = ι, for Ω � Φ. Therefore, the congruence u/Φ ≡ v/Φ

(Γ(Ω,Φ)) always holds. We conclude that

u/Φ ≡ v/Φ (Γ(Ω,Φ)), for all Φ ∈ M(ConK).

The last displayed congruence is equivalent to uψ ≡ vψ (Γ(Ω)) in S, which was to
be proved.

Conversely, assume that uψ ≡ vψ (Γ(Ω)) in S. Then

u/Φ ≡ v/Φ (Γ(Ω,Φ)), for all Φ ∈ M(ConK),

in particular,

u/Φ ≡ v/Φ (Γ(Ω,Φ)), for all Φ ∈ M(ConK) satisfying Ω ≤ Φ.

Thus u/Φ = v/Φ, for all Φ ∈ M(ConK) satisfying Ω ≤ Φ, that is, u ≡ v (Φ), for
all Φ ∈ M(ConK) satisfying Ω ≤ Φ. Therefore,

u ≡ v (
∧

( Φ ∈ M(ConK) | Ω ≤ Φ )).

The lattice Con K is finite, so every congruence is a meet of meet-irreducible con-
gruences, therefore,

Ω =
∧

( Φ ∈ M(ConK) | Ω ≤ Φ ),

and we conclude that u ≡ v (Ω) in K, and so uψ ≡ vψ (Ωψ) in Kψ, which was to
be proved. �
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For Ω ∈ Con K, the set

∆Ω = {Φ ∈ M(ConK) | Ω � Φ }
is a downset of M(ConK), and every downset of M(ConK) is of the form ∆Ω, for a
unique Ω ∈ ConK. The downset ∆Ω of M(ConK) describes Γ(Ω), and conversely.

We summarize the properties of the lattice S:
Lemma 1. Let K be a finite lattice with a cubic extension S. Then

(i) S is finite.
(ii) There is a one-to-one correspondence between the subsets of M(ConK) and the

congruences Ω of S; the subset of M(ConK) corresponding to the congruence
Ω of S is

{Φ ∈ M(ConK) | 1Φ ≡ 0 (Ω) },
where 1Φ is the unit element of the factor SΦ of S. Hence, the congruence
lattice of S is a finite Boolean lattice.

(iii) Every congruence Ω of K has an extension Γ(Ω) to a congruence of S corre-
sponding to the downset ∆Ω of M(ConK).

So we see now that a cubic extension S of K (i) has a “cubic” congruence lattice
(a power of C2, an “n-dimensional cube”), and (ii) K and its cubic extension S
have the same number of meet-irreducible congruences, and (iii) the congruences
of K extend to S (but, as a rule, the cubic extension has many more congruences).

3. Constructing the poset L

Let A be a finite lattice with zero 0 and unit 1. Let us call A separable, if it has
an element v which is a separator, that is, 0 ≺ v ≺ 1.

In this section, for a finite poset P , and a family Sp, for p ∈ P , of separable
lattices, we construct a poset on the set S =

∏
(Sp | p ∈ P ).

We denote by ∨S ,∧S ,≤S ,≺S the join, meet, partial ordering relation, and cov-
ering relation, respectively, in the lattice S, the direct product of Sp, for p ∈ P .

Denote by 0p, 1p, and vp, the zero, the unit, and a fixed separator, respectively,
of Sp, for p ∈ P . If there is no ambiguity, the subscripts will be dropped.

We need some notation in S. The elements of S will be bold face lower case
letters. An element s ∈ S is written in the form 〈sp〉p∈P . We write sp for sp. For
q ∈ P , let uq ∈ S be defined by (uq)q = 1 and otherwise, (uq)p = 0. For q ∈ P , let
vq ∈ S be defined by (vq)q = v and otherwise, (vq)p = 0.

Let B be the sublattice of S generated by {up | p ∈ P }. We call B the skeleton
of S; it is a boolean sublattice of S with n atoms. For a subset Q of P , set
uQ =

∨
S {up | p ∈ Q} with complement (uQ)′ = uP−Q in B (and in S). The

elements of B are blackfilled in Figures 1 and 2.
Now we come to the crucial definition of this paper:
On the set S, we define a binary relation ≤. Let a = 〈ap〉p∈P ,b = 〈bp〉p∈P ∈ S.
(P) a ≤ b in L iff a ≤S b and if p < p′ in P , then

ap = vp = bp implies that ap′ = bp′ .

Note that if P is unordered, then ≤ is the same as ≤S . In the smallest not
unordered example, P = {p, q} with p < q; Figure 1 illustrates what we get:
Sp = Sq = C3, the three-element chain; the two edges of C2

3 that are not edges of
L are dashed.
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Sq

〈0, 0〉

〈0, v〉〈v, 0〉

〈v, v〉

〈v, 1〉〈1, v〉

〈1, 1〉

Sp

p < q

uq = 〈0, 1〉up = 〈1, 0〉

Figure 1. The smallest example of the construction.

In Figure 2, we show the representation of the poset P = {p, q, r} with p < q
and r < q, with the lattices Sp = Sq = Sr = C3 = {0, v, 1}. Four edges of C3

3 are
missing in L; on the diagram these are marked with dashed lines.

From Section 5 on, we assume that each Sp is simple. So even the smallest
example is fairly large. Again, let P = {p, q} with p < q and Sp = Sq = M3 =
{0, a, b, v, 1}. Figure 3 illustrates what we get; note that the diagram is turned to

up

uq ur

u{p,q} u{p,r}

u{q,r}

uP

u∅

Sp Sq Sr

Figure 2. The smallest nontrivial example of the construction.
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its side. In this diagram, Sq is on the right, its elements are labeled 0, a, b, v, 1;
Its unit element is uq = 〈0, 1〉. The lattice Sp is on the left, its elements are all
labelled with 0; its unit element is up = 〈1, 0〉. Five edges of M2

3 are missing in L;
on the diagram these are marked with dashed lines.
Theorem 3. Let L be the relational system 〈S,≤〉. Then L is a poset.

Proof. The relation ≤ is obviously reflexive. By the definition of ≤:

If a ≤ b, then a ≤S b.

So the anti-symmetry of ≤S implies the anti-symmetry of ≤.
To prove the transitivity of ≤, let a, b, c ∈ L, and let a ≤ b ≤ c. Then

a ≤S b ≤S c, so by the transitivity of ≤S , we get a ≤S c. To verify (P) for a and
c, let p < p′ in P and assume that ap = v = cp. Since a ≤S b ≤S c, it follows that
ap ≤ bp ≤ cp, and we conclude that ap = bp = cp = v. Since a ≤ b and b ≤ c,
applying (P) twice, we obtain the equalities ap′ = bp′ , and bp′ = cp′ . It follows
that ap′ = cp′ , verifying (P) for a and c, hence proving that a ≤ c. Therefore, ≤ is
transitive. �

We shall need the following property of L:
Lemma 2.

(1) If a ≺ b in L, then a ≺S b in S.
(2) If a ≺S b in S, then a ≺ b in L unless there are q < q′ in P with

aq = v = bq and aq′ ≺ bq′ , in which case, a ‖ b in L.

Proof of (1). We start by observing that a ≺S b iff there is a unique q ∈ P such
that aq ≺ bq in Sq, and ar = br, otherwise.

Let us assume that a ≺ b in L. Then a <S b, by (P). Thus, there is q ∈ P such
that aq < bq.

We claim that aq ≺ bq in Sq. Indeed, if aq < c < bq, for some element c ∈ Sq,
then we define c = 〈cp〉p∈P as follows:

cp =


c, if p = q;
v, if ap = v = bp;
x, where x ∈ {ap, bp} − {v}, otherwise.

Obviously, a <S c <S b.
We now verify that a < c. Let p < p′ in P and let ap = cp = v. Notice that

ap = cp = bp = v. Since a < b, by (P), it follows that ap′ = bp′ . But then ap′ = cp′ ,
verifying a < c by (P).

We can verify that c < b, similarly.
Therefore, a < c < b, contrary to a ≺ b. This proves the claim. Thus we may

assume that aq ≺ bq.
We now claim that there is only one q with aq < bq. Indeed, let us assume that

there are q �= r in P with aq < bq and ar < br. We assume that q is minimal in P
with the property: aq < bq. There are two cases to consider.

Case 1: bq = v. Since v is a separator, it follows that aq = 0. Define c = 〈cp〉p∈P

by

cp =

{
ap, for p = q;
bp, for p �= q.
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Figure 3. The smallest example of the construction with simple
lattices—sideways.
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Obviously, a <S c <S b. Since aq = 0 and cp = bp, for p �= q, therefore, cp = v
iff bp = v. We now verify that a < c. Let p < p′ in P and let ap = cp = v. We
cannot have p = q, because aq = 0. Thus p �= q, and so ap = bp = cp = v. Now (P)
and a < b imply that ap′ = bp′ . For any p′, either ap′ or bp′ equals cp′ . Therefore,
ap′ = bp′ = cp′ , concluding that a < c.

We next verify that c < b. Let p < p′ in P and let cp = bp = v and assume to
the contrary that cp′ < bp′ . By the definition of c, this is possible only if p′ = q,
in which case the minimality of q forces ap = bp = v, contradicting a < b. Thus
c < b.

We conclude that a < c < b, contradicting that a ≺ b.
Case 2: bq �= v. In this case, define c = 〈bp〉p∈P by

cp =

{
bp, for p = q;
ap, for p �= q.

Obviously, a <S c <S b. We now verify that a < c. Let p < p′ in P and let
ap = cp = v. Assume, to the contrary, that ap′ �= cp′ . By the definition of c, then
p′ = q. Since q is minimal with respect to aq < bq, it follows from p < p′ = q that
ap = bp. So ap = bp = v and ap′ < bp′ , which by (P) contradicts the assumption
a < b. This proves that a < c.

We next verify that c < b. Let p < p′ in P and let cp = bp = v. By the
assumption of Case 2, bq �= v, and so p �= q. We conclude that cp = bp = ap = v.
Since a < b, by (P), we obtain that ap′ = bp′ . Therefore, p′ �= q. By the definition
of c, we have that ap′ = cp′ , so ap′ = bp′ = cp′ , verifying c < b.

We conclude that a < c < b, contradicting that a ≺ b.
This completes the proof of (1). �

Proof of (2). Now assume that a ≺S b. Then there is a unique q ∈ P with aq ≺ bq,
and otherwise, ar = br. Consequently, if a < b, then a ≺ b in L. If a < b fails,
then by (P), there are elements p < p′ in P with ap = v = bp and ap′ < bp′ ,
implying that a ‖ b in L. �

4. L is a lattice

Now we prove that we have constructed a lattice and describe the lattice opera-
tions. To facilitate this, we introduce the following terminology: Let a = 〈ap〉p∈P ,
b = 〈bp〉p∈P ∈ L, and let q ∈ P ; we shall call q an {a,b}-fork, if aq = bq = v and
aq′ �= bq′ , for some q′ > q.

Theorem 4. L is a lattice. Let a = 〈ap〉p∈P , b = 〈bp〉p∈P ∈ L. Then

(a ∨ b)p =



1, if ap ∨ bp = v and, for some p′ ≥ p,
(1) p′ is an {a,b}-fork, or
(2) bp ≤ ap and bp′ � ap′ , or
(3) ap ≤ bp and ap′ � bp′ ;

ap ∨ bp, otherwise;
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and

(a ∧ b)p =



0, if ap ∧ bp = v and for some p′ ≥ p,
(1) p′ is an {a,b}-fork, or
(2) bp ≥ ap and bp′ � ap′ , or
(3) ap ≥ bp and ap′ � bp′ ;

ap ∧ bp, otherwise.

Proof. Recall that v is separable, and therefore join-irreducible, hence ap∨bp = v is
equivalent to 〈ap, bp〉 ∈ {〈0, v〉, 〈v, 0〉, 〈v, v〉} and similarly, ap ∧ bp = v is equivalent
to 〈ap, bp〉 ∈ {〈1, v〉, 〈v, 1〉, 〈v, v〉}. Also notice that if ap = bp = v and Case (1)
occurs, then p is an {a,b}-fork; in Cases (2) and (3), we must have p′ > p. Let c
be the element defined in the join formula. To see that a ≤ c (using the definition
(P) of ≤), first note that a ≤S a ∨S b ≤S c, so that a ≤S c. Let ap = cp = v and
p′ > p; we must show that ap′ = cp′ .

Now ap = cp = v implies that ap = ap ∨ bp = cp = v, and so bp ≤ ap = v.
Hence, for all q ≥ p, none of Cases (1)–(3) occur. That is, for all q ≥ p, q is not an
{a,b}-fork (Case (1)) and bq ≤ aq (Case (2)). In Case (3), using that bp ≤ ap = v,
if ap ≤ bp, then ap = bp = v, and since p is not an {a,b}-fork, aq = bq, for q ≥ p.

Consequently, bp′ ≤ ap′ . Hence, ap′ = ap′ ∨ bp′ ≤ cp′ , with equality holding
unless v = ap′ = ap′ ∨ bp′ and one of Cases (1)–(3) holds, for some p′′ ≥ p′. But
Case (1) cannot occur because p′′ = q ≥ p is not an {a,b}-fork, and Case (2)
cannot occur since p′′ ≥ p forces bp′′ ≤ ap′′ . For Case (3), note that bp′ ≤ ap′ , since
p′ > p. Hence, ap′ ≤ bp′ = v forces ap′ = bp′ = v. But p′ > p is not an {a,b}-fork,
so ap′′ = bp′′ , and so Case (3) cannot occur. Thus, ap′ = cp′ and a ≤ c. Similarly,
b ≤ c.

It remains to show that c is the least upper bound of a, b in L. So let a, b ≤ d.
Then a, b ≤S d, so a ∨S b ≤S d. We first show that c ≤S d. For p ∈ P , if
ap ∨ bp = cp, then cp ≤ dp. Let ap ∨ bp < cp; as in the previous paragraph, it follows
that ap ∨ bp = v < 1 = cp. Therefore, v ≤ dp ≤ 1. If dp = 1, then cp ≤ dp, as
required. Now assume that dp = v. Since ap∨bp = v < 1 = cp, one of Cases (1)–(3)
must occur; in each case, we will arrive at a contradiction. If Case (1) occurs, then
ap = bp = dp = v and, for some p′ > p, we have ap′ �= bp′ . We conclude that dp′

cannot equal both ap′ and bp′ , contradicting that d is a common upper bound of a
and b. If Case (2) occurs, then bp ≤ ap = v = dp and bp′ � ap′ , for some p′ > p.
Then dp′ ≥ ap′ ∨ bp′ > ap′ , contradicting that a ≤ d. Symmetrically, Case(3) leads
to a contradiction. Thus, c ≤S d.

To prove that c ≤ d, let cp = dp = v and choose p < p′; we must show that
cp′ = dp′ . Since cp = dp = v, the join formula tells us that ap ∨ bp = cp = v;
without loss of generality, we may assume that ap = v so that ap = v = dp. As
c ≤S d, either cp′ = dp′ or cp′ < dp′ . In the latter case, we have ap′ ≤ cp′ < dp′ ,
contradicting that a ≤ d. Hence, cp′ = dp′ . This proves that c ≤ d and therefore
c is the least upper bound of a, b in L.

The proof of the meet formula is similar, mutatis mutandis. �

From now on, for a, b ∈ L, a ≤ b, a∨b, a∧b, refer to the partial ordering and
operations in L.

We shall need two lemmas that immediately follow from the join and meet for-
mulas.
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For p ∈ P , the element v is doubly irreducible in Sp. Therefore, each S′
p =

Sp − {v} is a sublattice of Sp. Let S′ be the direct product of the S′
p, p ∈ P .

Obviously, S′ is a sublattice of S.
Lemma 3.

(1) S′ is a sublattice of both L and S.
(2) For p ∈ P , the interval [0,up] is a sublattice of both L and S; in fact, the

same sublattice, that is, (≤)|[0,up] = (≤S)|[0,up].

Proof. The proof follows from the join and meet formulas of Theorem 4. �

Lemma 4. Let a ∈ L and let D be a downset of P . Then

a ∨ uD = a ∨S uD,

and
a ∧ (uD)′ = a ∧S (uD)′.

Proof. By the join formula, (a ∨ uD)p = (a ∨S uD)p unless ap = v, p /∈ D, and
ap′ < 1, for some p < p′ with p′ ∈ D. But this cannot happen since D is a downset.
By the meet formula, (a ∧ (uD)′)p = (a ∧S (uD)′)p unless ap = v, p /∈ D, and
ap′ > 0, for some p < p′ with p′ ∈ D. But this also cannot happen since D is a
downset. �

5. The congruences of L

Now let each Sp be simple; then S has a congruence lattice isomorphic to B such
that uQ ∈ B is associated with the smallest congruence on S collapsing 0 and uQ,
denoted ΘQ. Clearly, S is isoform. We are going to prove that the congruences
of L are just the congruences ΘD of S for D a downset of P . As an illustra-
tion, in Figure 3, the lattice has exactly one nontrivial congruence, “projecting”
L onto Mq. The five congruence classes have five elements each, labelled x, with
x ∈ {0, v, a, b, 1}.

For p ∈ P , the lattice Sp is assumed to be simple, so the set Sp − {0, 1, v} �= ∅.
Therefore, we can select wp ∈ Sp − {0, 1, v}; we shall write w for wp if the index is
understood. We define wq by (wq)q = w and otherwise, (wq)p = 0.
Lemma 5. Let Θ be a congruence of L, and let 0 ≡ up (Θ), for some p ∈ P . If
q < p, then 0 ≡ uq (Θ).

Proof. From 0 ≡ up (Θ) and q < p, the join formula tells us that vq = 0 ∨ vq ≡
up ∨ vq = u{p,q} (Θ). Similarly, 0 = wq ∧ vq ≡ wq ∧ u{p,q} = wq (Θ). Lemma 3
implies that [0,uq] is a simple sublattice of L, so we obtain 0 ≡ uq (Θ). �

Lemma 6. Let Θ be a congruence of L and D a downset of P . Let a, b ∈ L with
ap = 0 and bp = 1, for p ∈ D and ap = bp, for p /∈ D. Then a ≤ b and 0 ≡ uD

(Θ) iff a ≡ b (Θ).

Proof. Clearly, b = a∨S uD = a∨uD, by Lemma 3. Thus, a ≤ b. Let 0 ≡ uD (Θ).
Then a = 0 ∨ a ≡ uD ∨ a = b (Θ). Conversely, if a ≡ b (Θ), then 0 = a ∧ uD ≡
b ∧ uD = uD (Θ). �

Lemma 7. Let Θ be a congruence of L and let a ≺ b in L with a ≡ b (Θ). Then
there is a unique p ∈ P with ap ≺ bp and aq = bq, for p �= q; moreover, 0 ≡ up (Θ).
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Proof. If a ≺ b, then from Lemma 2, there is a unique p ∈ P with ap ≺ bp and
aq = bq otherwise. Moreover, if aq = bq = v, then q � p. If bp = v so that ap = 0,
then we get (a ∨ wp)p = w < 1 = (b ∨ wp)p and otherwise (a ∨ wp)q = aq = bq =
(b ∨ wp)q since aq = bq = v implies that q � p, so that (wp)r = 0, for all q < r.
This yields that a∨wp ≺ b∨wp with a∨wp ≡ b∨wp (Θ). Thus, we may assume
that bp �= v. Then 0 ≤ a∧up < b∧up ≤ up and a∧up ≡ b∧up (Θ). By Lemma 3,
[0,up] is a simple sublattice of L. Hence, 0 ≡ up (Θ). �

Theorem 5. Let Θ be a congruence of L; then there is a downset D of P such
that Θ = ΘD. Conversely, let D be a downset of P ; then ΘD is a congruence of L.

Proof. Let Θ be a congruence of L. Define Prec(Θ) to be the set of all 〈a,b〉 ∈ L2

such that a ≡ b (Θ) and a ≺ b. Define D to be the set of all p ∈ P such that
ap ≺ bp for some 〈a,b〉 ∈ Prec(Θ). By Lemma 7, 0 ≡ up (Θ), for all p ∈ D. By
Lemma 5, D is a downset of P . By Lemma 3,

∨
(up | p ∈ D ) = uD; hence, 0 ≡ uD

(Θ). By Lemma 6, ΘD ⊆ Θ. On the other hand, since L is finite, Θ is the smallest
equivalence relation containing Prec(Θ), so we must have Θ ⊆ ΘD. Thus, Θ = ΘD.

Conversely, let D be a downset of P . A typical ΘD-class is of the form [a,b],
where for p ∈ D, ap = 0 and bp = 1, and otherwise aq = bq. By Lemma 4,
a ≤ a ∨ uD = a ∨S uD = b. Let c ∈ L; it suffices to show that a ∨ c ≡ b ∨ c (Θ)
and a ∧ c ≡ b ∧ c (Θ).

For the join, we may take a ≤ c, so that a ∨ c = c ≤ b ∨ c. Let us assume that
cp < (b ∨ c)p; we must show that p ∈ D. If cp < bp ∨ cp, then from ap ≤ cp, we
conclude that ap �= bp, and so p ∈ D. Otherwise, cp = bp ∨ cp < (b ∨ c)p so that
cp = v = bp ∨ cp < 1 = (b ∨ c)p. Again if ap �= bp, then p ∈ D; so assume that
ap = bp ≤ cp = v. As D is a downset, we must have aq = bq for all q ≥ p. Now,
bp ∨ cp = v < 1 = (b ∨ c)p implies that one of Cases (1)–(3) holds for {b, c}, for
some p′ ≥ p. Note that bp ≤ cp implies that Case(3) cannot occur. If Case (1)
occurs, then ap′ = bp′ = cp′ = v; hence, p′ being a {b, c}-fork forces p′ to be an
{a, c}-fork, contradicting that a ≤ c. If Case (2) occurs, then ap′ = bp′ � cp′ , again
contradicting a ≤ c. This proves that a ∨ c ≡ b ∨ c (Θ).

For the meet, we proceed similarly. �

6. L is isoform

As in Section 5, we assume that each Sp is simple.
Theorem 6. L is isoform.

Proof. Let D be a downset of P ; in S every block of ΘD can be written in the
form [a,a ∨S uD], for some a ≤S (uD)′. Hence if b, c ∈ [a,a ∨S uD] and bp �= cp,
then p ∈ D. The map ϕa : [0,uD] → [a,a ∨S uD] defined by φa(x) = x ∨S uD is
an isomorphism of sublattices of S. By Lemma 4, a ≤ a ∨ uD = a ∨S uD; thus,
the blocks of ΘD in L are also of the form [a,a ∨S uD] for some a ≤ (uD)′ (which
is the same as a ≤S (uD)′). We shall show that φa is also an isomorphism of
L-sublattices; this will prove that L is isoform. We shall make use without further
mention that for b, c ∈ L, (b ∨S c)p = bp ∨ cp, for all p ∈ P .

Obviously, φa is a bijection. Let us assume that 0 ≤ b ≺ c ≤ uD. Then by
Lemma 4 and the fact that φa is an S-isomorphism, it follows that b∨S a ≺S c∨S a.
If we do not have b ∨S a ≺ c ∨S a, then by Lemma 2, there are p < p′ with
bp ∨ ap = v = cp ∨ ap and bp′ ∨ ap′ ≺ cp′ ∨ ap′ . From this latter, we get p′ ∈ D;
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since D is a downset and p < p′, we have p ∈ D. But then a ≤ (uD)′ implies
that ap = ap′ = 0; therefore, v = bp ∨ ap = bp and v = cp ∨ ap = cp, so that
bp = cp = v. Since b ≺ c, we have that bp′′ = cp′′ for all p < p′′. For p′′ = p′, this
yields bp′ ∨ ap′ = bp′ = cp′ = cp′ ∨ ap′ , contradicting that bp′ ∨ ap′ ≺ cp ∨ ap. Thus,
b ∨S a ≺ c ∨S a.

Now assume that a ≤ b′ ≺ c′ ≤ a ∨S uD; hence, a ≤S b′ ≺S c′ ≤S a ∨S uD.
Since ϕa is an S-isomorphism, there are unique 0 ≤S b ≺S c ≤S uD such that
b′ = b ∨S a and c′ = c ∨S a. Hence there is a unique p ∈ D such that bp ≺ cp,
bp ∨ ap ≺ cp ∨ ap, and bq ∨ aq = cq ∨ aq, for p �= q. We need to show that b ≤ c.
So let br = v = cr; then r �= p. We have to verify that bq = cq, for r < q. This can
fail only if r < p. But then r < p ∈ D, a downset; hence, r ∈ D. Since a ≤ (uD)′,
it follows that ar = ap = 0. But then br ∨ ar = br = v = cr = cr ∨ ar, while
bp ∨ap ≺ cp ∨ap, contradicting that b′ ≤ c′. Thus b ≺ c. This completes the proof
that L is isoform. �

7. Proof of Theorem 1

Let K be a finite lattice. As in Section 2, for every meet-irreducible congruence Φ
of K, we form the quotient lattice K/Φ, and extend it to a finite, simple, separable
lattice SΦ. The cubic extension S is the direct product of the SΦ, Φ ∈ M(ConK)
and ψ : a �→ D(a) = 〈a/Φ | Φ ∈ M(ConK)〉 is the diagonal embedding. For
a congruence Θ of K, let Θψ denote the corresponding congruence of Kψ. We
identify a with D(a), for a ∈ K.

Note that by Lemma 3, the set {D(a) | a ∈ K } is also a sublattice of L, so we
can regard ψ an embedding of K into L.

For Θ ∈ Con K and Φ ∈ M(ConK), let Γ(Θ,Φ) = ω, if Θ ≤ Φ, and Γ(Θ,Φ) = ι,
otherwise. Then Γ(Θ) = 〈Γ(Θ,Φ) | Φ ∈ M(ConK)〉 is a congruence of S, an
extension of Θψ.

Now carry out the construction of L as in Section 3 with the poset P = M(ConK)
and for the lattices SΦ, Φ ∈ M(ConK).

In Lemma 1.(iii), we observe that the congruences Γ(Θ) of S correspond to the
downsets of M(ConK).

In Section 5, we describe the congruences of L as ΘD, where D be a downset of
P (see Theorem 5).

Now comes the trivial but crucial observation:
We assigned in Section 2 to a congruence Ω of K, the downset

DΩ = {Φ ∈ M(ConK) | Φ � Ω }.

Then the binary relation Γ(Ω) is the same as the binary relation ΘDΩ .
Now to prove Theorem 1, identify a with D(a), for a ∈ K. Let Θ be a con-

gruence of K. Then Γ(Θ) by the above observation is a congruence of L, so every
congruence of K extends to a congruence Γ(Θ) of L. But by Theorem 5 and the
above observation, every congruence of L is of the form Γ(Θ), hence Θ �→ Γ(Θ) is
an isomorphism between Con K and ConL. Therefore, Γ(Θ) is the unique exten-
sion of Θ to L, so L is a congruence-preserving extension. This completes the proof
of Theorem 1.
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8. A small example

What is the lattice L we obtain in Theorem 1, if we start with a small lattice K?
In this section, we construct L for the lattice K of Figure 4. The lattice K has only
one nontrivial congruence Θ, splitting K into two classes, indicated by the dashed
line. It has two meet-irreducible congruences, Θ and ω.

a

1

0

b c

d

Figure 4. The lattice K.

To construct the cubic extension of K, we form K/Θ and K = K/ω and we have
to embed them into finite, simple, separable lattices, SΘ and Sω, respectively. The
choice for Sω is clear, see Figure 5. We just add one element v to K to make it
simple.

However, the choice for SΘ
∼= C2 is problematic. The smallest simple separable

lattice containing the two-element chain is M3. Choosing it, would make S a
difficult to draw 35 element lattice. So we use a trick: We declare that we can
choose the two-element chain as SΘ. This, of course, does not have a separating
element. However, the definition of the partial ordering can be rewritten:

(P) a ≤ b in L iff a ≤S b and if p < p′ in P , then

ap = vp = bp implies that ap′ = bp′ ,

provided that vp exists.
We do not run into trouble with this until Section 5, in particular, Lemma 5,

where if p < q in P , then we need the existence of vp.
So in our example, we need a separating element in Sω but not in SΘ, so we

can choose SΘ = C2, the two-element chain. This reduces the number of elements
in S to 14, so we can easily draw that; see Figure 6. We also indicate how K is a
sublattice of S.

Finally, we construct L from S by deleting a single edge, see Figure 7. We also
indicate how K is a sublattice of L, so that it can be readily verified that L is a
congruence-preserving extension of K.

9. Discussion

9.1. Regular lattices. Let L be a lattice. We call a congruence relation Θ of L
regular, if any congruence class of Θ determines the congruence. Let us call the
lattice L regular, if all congruences of L are regular.

Sectionally complemented lattices are regular, so we already have a represen-
tation theorem in G. Grätzer and E. T. Schmidt [2]; we also have the stronger
congruence-preserving extension version in G. Grätzer and E. T. Schmidt [4]. We
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a

1

0

b c

d

v

Figure 5. The lattice Sω.

a

1

0

b c

d

Figure 6. The lattice S.

a

1

0

b c

d

Figure 7. The lattice L.

would like to point out, that Theorem 1 contains these statements. This follows
from

Lemma 8. Every finite isoform lattice is regular.
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Proof. Let L be an isoform lattice. Let Θ and Φ congruences sharing the block A.
Then A is also a block of Θ∧Φ; in other words, we can assume that Θ ≤ Φ. Let B
be an arbitrary Θ block. Since Θ ≤ Φ, there is a (unique) Φ block B containing B.
Since L is isoform, A ∼= B and A ∼= B; by finiteness, B = B, that is, Θ = Φ. �

Corollary. The lattice L of Theorem 1 is regular.

9.2. Permutable congruences. The representation result for permutable con-
gruences appeared in G. Grätzer and E. T. Schmidt [2]. Since sectionally comple-
mented lattices have permutable congruences, the stronger congruence-preserving
extension version can be found in G. Grätzer and E. T. Schmidt [4]. We would like
to point out, that Theorem 1 contains these statements. This follows from

Lemma 9. The lattice L of Theorem 1 is congruence permutable.

Proof. This is obvious since the congruences of L are congruences of S, which is a
direct product of simple latices. �

9.3. Deterministic isoform lattices. Let L be an isoform lattice, let Φ be a
congruence of L, and let AΦ be a congruence class of Φ. Then any congruence
class of Φ is isomorphic to AΦ. However, if Φ and Ψ are congruences of L, it may
happen that AΦ and AΨ as lattices are isomorphic. Let us call an isoform lattice
L deterministic, if this cannot happen; in other words, if Φ �= Ψ are congruences
of L, then AΦ and AΨ are not isomorphic.

Lemma 10. The lattice L of Theorem 1 can be constructed to be deterministic.

Proof. The size |AΦ| is the product of the |SΦ|, Φ ∈ M(ConK). Since we can easily
construct the SΦ-s so that all |SΦ|-s are distinct primes, the statement follows. �

9.4. A small construction. Let K be a finite lattice. For every meet-irreducible
congruence Φ of K, we form the quotient lattice K/Φ, and extend it to a finite,
simple, separable lattice SΦ. We can construct SΦ by adding only three elements
to K/Φ as follows: K/Φ is a subdirectly irreducible lattice; so it has a covering pair
a ≺ b such that Cg(a, b) is the unique minimal congruence of K/Φ. Define a new
element sΦ, a relative complement of a in [0, b], and two others: v1

Φ and v2
Φ, new

separator elements. The resulting lattice is simple.

9.5. Rectangular vs. cubic extensions. In G. Grätzer and E. T. Schmidt [3],
we introduced a rectangular extension R(K) of a finite lattice K as the direct
product of all subdirect quotients K/Φ. We then selected S(K/Φ), a finite, simple,
sectionally complemented extension of K/Φ, and formed

R̂(K) =
∏

(S(K/Φ) | Φ ∈ M(ConK) )

of R(K).
We changed the terminology for various reasons. (i) It seems immaterial, in

general, that S(K/Φ) be sectionally complemented. (ii) R(K) seems to be unim-
portant; its congruence lattice is not really closely connected to the congruence
lattice of K. On the other hand, the congruence lattice of R̂(K) is very closely
connected to the congruence lattice of K: they have the same number of meet-
irreducible elements.



16 G. GRÄTZER, R.W. QUACKENBUSH, AND E.T. SCHMIDT

9.6. Pruned lattices. In G. Grätzer and E. T. Schmidt [6], we introduced the
concept of pruning a poset.

Let Q = 〈Q;≤Q〉 be a finite poset. Then the partial ordering ≤Q on Q is the
reflexive-transitive extension of ≺Q, the covering relation in 〈Q;≤Q〉, in formula:
ReflTr(≺Q) = ≤Q. Now take a subset H of ≺Q, and take the reflexive-transitive
extension ReflTr(H) of H. Then Q′ = 〈Q; ReflTr(H)〉 is also a poset; we call it a
pruning of Q. If you think of Q in terms of its diagram, then the terminology is
easy to picture: We obtain the diagram of Q′ from the diagram of Q by cutting out
(pruning) some edges (each representing a covering) but not deleting any elements.

The construction of the lattice L was originally introduced by pruning the lat-
tice S. While this approach may be intuitively clearer than the definition of L in
Section 3, it is not very practical. With the pruning definition, it is clear that we
get a poset, but is is difficult to decide whether we have a lattice, and the join and
meet formulas of Section 4 are very difficult to obtain.

Lemma 2 describes which edges are pruned from S to give L. We can rephrase
the description to make it easier to picture. For a ∈ S and p ∈ P , define

T (a, p) = {b ∈ S | aq = bq, for all q �= p }.

T (a, p) is a sublattice of S isomorphic to Sp and the covering relation in S is the
disjoint union of the covering relations of these sublattices. The set of edges of
T (a, p) is either fully included in the set of edges L (if there is no q < p in P with
aq = v) or it is fully pruned from S, that is, it is disjoint from the set of edges on L
(if there is q < p in P such that aq = v).

Question: Is it true that in the construction we need only that ConK is finite
(congruence finite)?

9.7. Naturally isoform lattices. Let L be a lattice. Let us call a congruence
relation Θ of L naturally isoform, if any two congruence classes of Θ are naturally
isomorphic (as lattices) in the following sense: if a ∈ L is the smallest element of
the class a/Θ, then x �→ x ∨ a is an isomorphism between 0/Θ and a/Θ. Let us
call the lattice L naturally isoform, if all congruences of L are naturally isoform.

The lattice L of Theorem 1 is not naturally isoform. There is a good reason for
it:

Theorem 7. Let L be a finite lattice. If L is naturally isoform, then ConL is
Boolean.

Proof. If L is simple, the statement is trivial.
Let Θ be a nontrivial congruence relation of L. Let a be the largest element

of the Θ-class 0/Θ and let b be the smallest element of the Θ-class 1/Θ. Then
obviously a∨ b = 1. If a∧ b > 0, then b∨ 0 = b∨ (a∧ b) (= b), therefore, x → x∨ b
is not an isomorphism between 0/Θ and b/Θ. Thus a ∧ b = 0.

We prove that L ∼= (a] × (b]. For c ∈ L, we get c ∧ b ≡ c ∧ 1 = c (Θ) and so
c∧b ∈ c/Θ. If d < c∧b is the smallest element of c/Θ, then the natural isomorphism
between 0/Θ and d/Θ would force that c ∧ b = d ∨ x, for some 0 < x ≤ a,
contradicting that (c∧ b)∧ a = 0. The natural isomorphism between 0/Θ and c/Θ
yields that c = (c ∧ b) ∨ x, for some unique x ≤ a. Since x ≤ c, clearly, x ≤ c ∧ a.
Therefore, (c∧b)∨(c∧a) ≤ c = (c∧b)∨x ≤ (c∧b)∨(c∧a), that is, c = (c∧b)∨(c∧a).
This proves that L ∼= [0, a] × [0, b].
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Thus Θ is the kernel of the projection of L onto [0, a] and so has a complement,
the kernel of the projection of L onto [0, b]. We conclude that ConL is Boolean. �

9.8. Some open problems.

Problem 1. Is there an analogue of Theorem 1 for infinite lattices?

All finite isoform lattices in [6] and in this paper are congruence permutable. So
we ask:

Problem 2. Is every finite isoform lattice congruence permutable?

By [4] and also by Theorem 1 and Lemma 9 of this paper, every finite lattice
has a congruence-preserving extension to a congruence permutable lattice.

Problem 3. Does every lattice have a congruence-preserving extension to a con-
gruence permutable lattice?

By Lemma 10, every finite lattice has a congruence-preserving extension to a
deterministic lattice. Can this result be extended to infinite lattices?

Problem 4. Does every lattice have a congruence-preserving extension to a deter-
ministic lattice?

Let L be a finite lattice. A congruence Θ of L is algebraically isoform if, for every
a ∈ L, there is a unary algebraic function p(x) that is an isomorphism between 0/Θ
and a/Θ. The lattice L is algebraically isoform, if all congruences are algebraically
isoform.

Problem 5. Does every finite lattice has a congruence-preserving extension to an
algebraically isoform finite lattice?

Problem 6. Can we carry out the construction for Theorem 1 in case ConK is
finite (as opposed to K is finite)?
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