Midterm Exam - April 24, 2018, Limit thms. of probab.

Family name
 \qquad Given name

\qquad

Signature

\qquad

Neptun Code

\qquad

No calculators or electronic devices are allowed. One formula sheet with 15 formulas is allowed.

1. (7 marks) Given some $p \in(0,1)$, let $Y_{p, 0}, Y_{p, 1}, Y_{p, 2}, \ldots$ denote i.i.d. random variables with Bernoulli distribution:

$$
\mathbb{P}\left(Y_{p, n}=1\right)=p, \quad \mathbb{P}\left(Y_{p, n}=0\right)=1-p .
$$

Let $X_{p}=\min \left\{n \geq 0: Y_{p, n}=1\right\}$.
Use the method of characteristic functions to prove that $p X_{p} \Rightarrow \operatorname{EXP}(1)$ as $p \rightarrow 0_{+}$.
Solution: X_{p} has pessimistic geometric distribution: $\mathbb{P}\left(X_{p}=k\right)=(1-p)^{k} p, k=0,1,2, \ldots$
$\varphi_{p}(t)=\mathbb{E}\left(e^{i t X_{p}}\right)=\sum_{k=0}^{\infty} e^{i t k}(1-p)^{k} p=p \sum_{k=0}^{\infty}\left(e^{i t}(1-p)\right)^{k}=\frac{p}{1-e^{i t}(1-p)}$.
$\lim _{p \rightarrow 0} \varphi_{p}(p t)=\lim _{p \rightarrow 0} \frac{p}{1-e^{i p t}(1-p)}=\lim _{p \rightarrow 0} \frac{1}{1-\left(e^{i p t}-1\right) / p}=\frac{1}{1-i t}$, the characteristic function of $\operatorname{EXP}(1)$.
2. (8 marks) Let $1>p_{1} \geq p_{2} \geq p_{3} \geq \cdots \geq 0$. Let X_{1}, X_{2}, \ldots denote independent random variables with Bernoulli distribution:

$$
\mathbb{P}\left(X_{n}=1\right)=p_{n}, \quad \mathbb{P}\left(X_{n}=0\right)=1-p_{n} .
$$

Let us define $S_{n}=X_{1}+\cdots+X_{n}$. Write down the extra conditions that we need to impose on the sequence $\left(p_{n}\right)_{n=1}^{\infty}$ so that we can conclude that

$$
\frac{S_{n}-\sum_{k=1}^{n} p_{k}}{\sqrt{\sum_{k=1}^{n} p_{k}}} \Rightarrow \mathcal{N}(0,1)
$$

Hint: Use Lindeberg's theorem.

Solution:

$\mathbb{E}\left(S_{n}\right)=\sum_{k=1}^{n} p_{k}, \operatorname{Var}\left(S_{n}\right)=\sum_{k=1}^{n} p_{k}\left(1-p_{k}\right)$.
In order to prove $\frac{S_{n}-\mathbb{E}\left(S_{n}\right)}{\sqrt{\operatorname{Var}\left(S_{n}\right)}} \Rightarrow \mathcal{N}(0,1)$, we need to check Lindeberg's condition. We want to show that for any $\varepsilon>0$ we have

$$
\lim _{n \rightarrow \infty} \frac{1}{\operatorname{Var}\left(S_{n}\right)} \sum_{k=1}^{n} \mathbb{E}\left(\left(X_{k}-p_{k}\right)^{2} \mathbb{1}\left[\left|X_{k}-p_{k}\right|>\varepsilon \sqrt{\operatorname{Var}\left(S_{n}\right)}\right]\right)=0
$$

If $\lim _{n \rightarrow \infty} \operatorname{Var}\left(S_{n}\right)=+\infty$ then $\mathbb{1}\left[\left|X_{k}-p_{k}\right|>\varepsilon \sqrt{\operatorname{Var}\left(S_{n}\right)}\right]=0$ for all $k \in \mathbb{N}$ and all $n \geq n_{0}$, where n_{0} is the smallest index for which $\varepsilon \sqrt{\operatorname{Var}\left(S_{n_{0}}\right)}>1$, since $\left|X_{k}-p_{k}\right| \leq 1$ for any k. Thus we have

$$
\frac{1}{\operatorname{Var}\left(S_{n}\right)} \sum_{k=1}^{n} \mathbb{E}\left(\left(X_{k}-p_{k}\right)^{2} \mathbb{1}\left[\left|X_{k}-p_{k}\right|>\varepsilon \sqrt{\operatorname{Var}\left(S_{n}\right)}\right]\right)=0, \quad n \geq n_{0}
$$

Now we note that if $\sum_{k=1}^{\infty} p_{k}=+\infty$ then $\lim _{n \rightarrow \infty} \operatorname{Var}\left(S_{n}\right)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} p_{k}\left(1-p_{k}\right)=+\infty$, thus we have $\frac{S_{n}-\mathbb{E}\left(S_{n}\right)}{\sqrt{\operatorname{Var}\left(S_{n}\right)}} \Rightarrow \mathcal{N}(0,1)$ by Lindeberg's theorem. In order to conclude $\frac{S_{n}-\mathbb{E}\left(S_{n}\right)}{\sqrt{\sum_{k=1}^{n} p_{k}}} \Rightarrow \mathcal{N}(0,1)$, we need

$$
\lim _{n \rightarrow \infty} \frac{\sqrt{\sum_{k=1}^{n} p_{k}\left(1-p_{k}\right)}}{\sqrt{\sum_{k=1}^{n} p_{k}}}=1
$$

The necessary and sufficient condition for this is $\lim _{n \rightarrow \infty} p_{n}=0$ (in addition to $\sum_{k=1}^{\infty} p_{k}=+\infty$).
Also note that if $\sum_{k=1}^{\infty} p_{k}<+\infty$ then $\mathbb{E}\left(S_{\infty}\right)<+\infty$, thus $\mathbb{P}\left(S_{\infty}<+\infty\right)=1$, thus in this case we actually have $\lim _{n \rightarrow \infty} \frac{S_{n}-\sum_{k=1}^{n} p_{k}}{\sqrt{\sum_{k=1}^{n} p_{k}}}=\frac{S_{\infty}-\sum_{k=1}^{\infty} p_{k}}{\sqrt{\sum_{k=1}^{\infty} p_{k}}}$, and the limiting random variable is discrete, so it definitely doesn't have standard normal distribution.

