Limit Large Dev. Thms. Exam, June 8, 2022.

1. Let $S_n = X_1 + \dots + X_n$, where X_1, X_2, \dots are i.i.d. with $\mathbb{P}(X_i = 1) = p$ and $\mathbb{P}(X_i = 0) = 1 - p$, 0 . $Let <math>0 \le x \le 1$. Calculate

$$I(x) = \lim_{n \to \infty} \frac{-1}{n} \ln \left(\mathbb{P} \left[S_n = \lfloor n \cdot x \rfloor \right] \right)$$

using the crude Stirling formula $k! \approx k^k e^{-k}$. Sketch the graph of the function $x \mapsto I(x)$.

Solution: See page 3 of scanned for the sketch of the graph if I and page 5 for the calculation.

2. Let $F(x) = \mathbb{P}(X \leq x)$. Note that F is right-continuous. Let

$$G(x) = \frac{1}{2} \lim_{\varepsilon \to 0} F(x - \varepsilon) + \frac{1}{2} \lim_{\varepsilon \to 0} F(x + \varepsilon) = \frac{1}{2} \left(F(x_{-}) + F(x) \right), \qquad x \in \mathbb{R}$$

In particular, if x is a point of continuity of F then G(x) = F(x). Let $\psi(t) = \mathbb{E}(e^{itX})$. Let Y denote an independent random variable with standard normal distribution. For $\sigma \in \mathbb{R}_+$ let F_{σ} denote the cumulative distribution function of X_{σ} , where $X_{\sigma} := X + \sigma Y$.

- (a) Show that $F_{\sigma}(x) = \mathbb{E}(\Phi\left(\frac{x-X}{\sigma}\right))$, where $\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-y^2/2} \,\mathrm{d}y$.
- (b) Give a formula for $\psi_{\sigma}(t) := \mathbb{E}(e^{itX_{\sigma}})$ in terms of ψ .
- (c) Use the dominated convergence theorem to show that $\lim_{\sigma \to 0} F_{\sigma}(x) = G(x)$.
- (d) For any $a \leq b \in \mathbb{R}$ give an integral formula for $F_{\sigma}(b) F_{\sigma}(a)$ in terms of ψ . *Hint:* Use Fubini and the inversion formula $F'_{\sigma}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \psi_{\sigma}(t) dt$.
- (e) Use the above results to show that for any $a \leq b \in \mathbb{R}$ we have

$$\frac{1}{2}\mathbb{P}(X=a) + \mathbb{P}(a < X < b) + \frac{1}{2}\mathbb{P}(X=b) = \lim_{\sigma \to 0} \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-ibt} - e^{-iat}}{-it} e^{-\sigma^2 t^2/2} \psi(t) \,\mathrm{d}t.$$

Solution: See the official solution of homework 8.1.

3. Let us denote by Y_i the highest water level of a river in year *i* in a city. Let us assume that the random variables Y_1, Y_2, \ldots are independent and identically distributed, moreover let us assume that Y_i has exponential distribution with parameter $\lambda = 2$.

A city near the river has a dam to protect the city from being flooded. If the city gets flooded in year i, they build a higher dam by the end of the year. If the city does not get flooded, they keep the current dam. Denote by X_i the height of the dam at the end of year i. In year zero, the height of the dam is zero, i.e., $X_0 = 0$. If there was a flood in year i (i.e., the highest water level that year was higher than the dam) then they build a new dam by the end of that year whose height is equal to the highest water level that year.

- (a) Write down a formula for the characteristic function of X_i which contains no integrals.
- (b) Denote by Z_i the number of times they had to rebuild the dam by the end of year *i*. Find positive real numbers a_i and b_i such that $(Z_i a_i)/b_i$ converges in distribution to a non-trivial limit as $i \to \infty$, and find the limiting distribution.

Instruction: Find an expression for a_i and b_i which contains no sums. If you use a theorem learnt in class, please check its conditions.

Solution: (a) $\mathbb{E}(e^{itX_n}) = \prod_{k=1}^n (1 - \frac{it}{2k})^{-1}$, see page 96-97 of scanned, (b) RECORDS: see page 119-120. 4. Let X_1, X_2, \dots i.i.d. with p.d.f.

$$f(x)=\frac{\alpha}{2|x|^{\alpha+1}}\mathbbm{1}[\,|x|>1\,],\qquad 0<\alpha<2.$$

Let $S_n = X_1 + \cdots + X_n$ and let $Z_n = S_n/n^{1/\alpha}$. Prove that

$$\lim_{n \to \infty} \mathbb{E}(e^{itZ_n}) = e^{-c|t|^{\alpha}}, \qquad c = \alpha \int_0^\infty \frac{1 - \cos(y)}{y^{\alpha+1}} \,\mathrm{d}y.$$

Instruction: Indicate the points in the calculation where the condition $\alpha < 2$ is used. Solution: See page 148-151 of scanned.