
Limit/large dev. thms. HW assignment 9. SOLUTION
1. The log-normal distribution is not determined by its moments (see page 135 of scanned).

(a) Let X ∼ N (0, 1) and Y = eX . Prove that

f(x) :=
d

dx
P(Y ≤ x) = (2π)−1/2x−1 exp{−(log x)2/2}11{x>0}.

This is called the standard log-normal distribution.

(b) Compute all moments E(Y k), k = 1, 2, . . . .

(c) Let a ∈ [−1, 1] be a fixed parameter and define fa : R → R+ as follows

fa(x) =

{
0 if x < 0,

f(x)
(
1 + a sin(2π log x)

)
if x ≥ 0.

(1)

Prove that fa is a probability density function and show that the moments of the corresponding
distribution don’t vary with the parameter a ∈ [−1, 1]. Thus, these different distributions have the
same sequence of moments.
Hint: Show

∫∞
0

xkf(x) sin(2π log x) dx = 0, k ∈ N by substituting x = exp(s+ k).

Solution:

(a) Let y ∈ R+. Let F (y) = P(Y ≤ y) = P(eX ≤ y) = P(X ≤ ln(y)) = Φ(ln(y)). Then

f(y) =
d

dy
F (y) = φ(ln(y))

1

y
=

1√
2π

e−(ln(y))2/2 1

y
.

Note that we will not use this density function in the rest of this exercise – we will calculate
everything using the standard normal distribution.

(b) E(Y k) = E(ekX) = M(k) = ek
2/2, where M(λ) is the moment generating function of X, calculated

in class, see page 14 of the scanned lecture notes.

(c) fa is non-negative, since 1+ a sin(2π ln(x) is non-negative for any a ∈ [−1, 1] and any x > 0. Recall
that we denote by Im(z) the imaginary part of the complex number z.∫ ∞

0

xkf(x) sin(2π log x) dx = E(Y k sin(2π log Y )) = E(ekX sin(2πX)) = E(ekXIm(e2πiX)) =

E(Im(e(2πi+k)X)) = Im
(
E(e(2πi+k)X)

)
= Im(M(2πi+ k)) = Im(e(2πi+k)2/2) =

Im(e−(2π)2/2e2πikek
2/2)

(∗)
= Im(e−(2π)2/2ek

2/2) = 0,

where in (∗) we used that e2πik = 1 if k ∈ N. Thus we have∫ ∞

0

xkfa(x) dx
(1)
=

∫ ∞

0

xkf(x) dx+ a

∫ ∞

0

xkf(x) sin(2π log x) dx = E(Y k) + 0.

In particular,
∫∞
0

fa(x) dx = 1, thus fa is indeed a probability density function.

Remark: Note that limk→∞
(
E(Y k)/k!

)1/k
= +∞ follows from ln(E(Y k)) = k2/2 and ln(k!) ≈ k ln(k)

(see page 4 of scanned), thus the result of this exercise does not contradict the lemma stated and proved
on page 135-136 of the scanned.
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2. Let X be a random variable and denote by φ(t) := E(eitX) (t ∈ R) its characteristic function. Let us
assume that −X ∼ X, i.e., we assume that the distribution of X is symmetric.

(a) Show that if lim supt→0

(
1− φ(t)

)
/t2 < +∞ then E(X2) < +∞.

Hint: For any u ∈ R+ let fu(t) :=
u3t2e−ut

2 . Calculate
∫∞
0

1−cos(tx)
t2 fu(t) dt and use the monotone

convergence theorem to show that limu→∞
∫∞
0

1−φ(t)
t2 fu(t) dt =

1
2E(X

2).

(b) Show that if E(X2) < +∞ then limt→0

(
1− φ(t)

)
/t2 = 1

2E(X
2). Hint: Dominated convergence.

(c) Show that φ(t) = e−c|t|α cannot be the characteristic function of a probability distribution if α > 2.

Solution:

(a) First note that
∫∞
0

fu(t) dt = 1, because fu(·) is the p.d.f. of the sum of three i.i.d. EXP(u) random
variables (see HW3.3). Now let us calculate∫ ∞

0

1− cos(tx)

t2
fu(t) dt =

u3

2

∫ ∞

0

(1− cos(tx))e−ut dt =
u3

2

∫ ∞

0

(1− Re(eitx))e−ut dt =

u3

2
Re

(∫ ∞

0

e−ut − e(ix−u)t dt

)
=

u3

2
Re

(
1

u
+

1

ix− u

)
=

u3

2
Re

(
1

u
+

−ix− u

x2 + u2

)
=

u3

2

(
1

u
+

−u

x2 + u2

)
=

1

2

(
u2 − u4

x2 + u2

)
=

1

2

(
x2u2 + u4 − u4

x2 + u2

)
=

1

2

x2u2

x2 + u2
.

Since −X ∼ X, we have φ(t) = E(cos(tX)), see page 86 of the lecture notes. Thus∫ ∞

0

1− φ(t)

t2
fu(t) dt =

∫ ∞

0

1− E(cos(tX))

t2
fu(t) dt =

∫ ∞

0

E
(
1− cos(tX)

t2
fu(t)

)
dt

(∗)
=

E
(∫ ∞

0

1− cos(tX)

t2
fu(t) dt

)
=

1

2
E
(

X2u2

X2 + u2

)
=

1

2
E
(

X2

X2/u2 + 1

)
,

where in (∗) we note that Fubini is applicable because the integrand is non-negative (see page 114).
Now note that X2

X2/u2+1 ≥ 0 and X2

X2/u2+1 is an increasing function of u, thus by the monotone
convergence theorem (see page 36) we have

lim
u→∞

∫ ∞

0

1− φ(t)

t2
fu(t) dt = lim

u→∞

1

2
E
(

X2

X2/u2 + 1

)
=

1

2
E
(

lim
u→∞

X2

X2/u2 + 1

)
=

1

2
E(X2).

Also note that if lim supt→0

(
1 − φ(t)

)
/t2 < +∞ then actually supt∈R

(
1 − φ(t)

)
/t2 = M < +∞,

therefore for any u ∈ R+ we have∫ ∞

0

1− φ(t)

t2
fu(t) dt ≤

∫ ∞

0

Mfu(t) dt = M

∫ ∞

0

fu(t) dt = M,

thus E(X2) ≤ 2M < +∞.
(b)

(
1 − φ(t)

)
/t2 = E

(
(1− cos(tX))/t2

)
and 0 ≤ 1 − cos(y) ≤ 1

2y
2, thus 0 ≤ (1 − cos(tX))/t2 ≤ 1

2X
2.

Now if E(X2) < +∞ then by dominated convergence (see page 37) we have

lim
t→0

1− φ(t)

t2
= lim

t→0
E
(
1− cos(tX)

t2

)
= E

(
lim
t→0

1− cos(tX)

t2

)
(∗∗)
= E(

1

2
X2),

where (∗∗) follows by applying L’Hospital’s rule twice.
(c) If φ(t) = e−c|t|α , where α > 2, and if we indirectly assume that φ is the characteristic function of

some random variable X then limt→0
1−φ(t)

t2 = 0 implies (using (a) and (b)) that E(X2) = 0, thus
P(X = 0) = 1, thus φ(t) ≡ 1, a contradiction. See page 147. See also HW7.1(b).

Remark: Let us assume −X ∼ X. Putting together (a) and (b) we see that lim supt→0

(
1− φ(t)

)
/t2 <

+∞ if and only if E(X2) < +∞. However let us note that lim supt→0

(
1 − φ(t)

)
/|t| < +∞ is not

equivalent to E(|X|) < +∞, as we now explain. First note that E(|X|) < +∞ does imply that φ is
differentiable (see page 90) and thus limt→0

(
1 − φ(t)

)
/t = −φ′(0) = −iE(X) = 0. But if X ∼ CAU(1)

then φ(t) = e−|t| and thus lim supt→0

(
1−φ(t)

)
/|t| = 1, however E(|X|) = +∞, see page 105. Note that

if −X ∼ X, then E(|X|) = 2
π

∫∞
0

1−φ(t)
t2 dt (even if one side is infinite), see page 113-114.
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3. Let X1, X2, . . . be independent random variables with the following distributions

P(Xm = ±m) =
1

2mβ
, P(Xm = 0) =

mβ − 1

mβ
,

and denote Sn = X1 + · · ·+Xn. Prove the following statements.

(a) If β > 1, then there exists a random variable S∞, so that Sn → S∞, almost surely.
Hint: Use Borel-Catelli.

(b) If β < 1, then
Sn

cn(3−β)/2
⇒ N (0, 1), (2)

with some appropriately chosen constant c ∈ (0,∞). Find c. Hint: Use Lindeberg.

(c) If β = 1, then Sn/n ⇒ ξ, where ξ is a random variable with characteristic function

E
(
eitξ

)
= exp

(
−
∫ 1

0

1− cos(ts)

s
ds

)
. (3)

Solution:

(a) If β > 1, then
∑∞

m=1 P(Xm ̸= 0) =
∑∞

m=1 m
−β < ∞, and due to the Borel-Cantelli Lemma

ν := max{m : Xm ̸= 0} < ∞, almost surely. Therefore limn→∞
∑n

m=1 Xm =
∑ν

m=1 Xm =: S∞
exists almost surely.

(b) If β ∈ (0, 1) we apply Lindeberg. First note that E(Xm) = 0 and Var(Xm) = E(X2
m) = m2−β .

σ2
n := Var(Sn) =

n∑
m=1

m2−β =

∫ n

0

x2−β dx+O(n2−β) =
n3−β

3− β
+O(n2−β).

We check Lindeberg’s condition. Let ε > 0 be fixed. For n sufficiently large, n2 < εσ2
n (since β < 1),

and for m ≤ n, we have P(X2
m ≤ n2) = 1, thus P(X2

m < εσ2
n) = 1. Therefore

lim
n→∞

1

σ2
n

n∑
m=1

E[X2
m1[X

2
m > εσ2

n]] = 0.

From this (and Slutsky) the result (2) follows, with the value of the constant c = (3− β)−1/2.

(c) We first compute the characteristic functions. We have φm(t) := E(eitXm) = 1− 1−cos(mt)
m and

E(eitSn/n) =

n∏
m=1

φm(t/n) =

n∏
m=1

(
1−

1− cos(mn t)

m

)
=

n∏
m=1

(
1− 1

n

1− cos(mn t)
m
n

)
(4)

We will use HW5.2 to show limn→∞ E(eitSn/n) = E
(
eitξ

)
(this will also show that the r.h.s. of (3)

is indeed the characteristic function of a random variable by the theorem stated on page 108).

Using the notation of HW5.2 let us fix t ∈ [0,+∞) and define yn,m = − 1
n

1−cos(m
n t)

m
n

.

Observe that yn,m ≤ 0 and sups>0
1−cos(s)

s < ∞ from which limn→∞ max1≤m≤n |yn,m| = 0 follows.

Also note that limn→∞
∑n

m=1 yn,m = −
∫ 1

0
1−cos(ts)

s ds by the definition of Riemannian integration.
This also shows that supn

∑n
m=1 |yn,m| < ∞.

Thus all of the conditions of HW5.2 are satisfied, thus limn→∞ E(eitSn/n) = E
(
eitξ

)
follows.

Remark: We did not have time to better understand the limiting distribution ξ that appears in (3)
because the semester is over. Let me just say that the distribution of ξ is a so-called infinitely divisible
distribution and ξ also appears in a slightly modified version of the one-dimensional Holtsmark problem.
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