Limit/large dev. thms. HW assignment 9. SOLUTION

1. The log-normal distribution is not determined by its moments (see page 135 of scanned).
(a) Let X ~N(0,1) and Y = eX. Prove that

d _ _
fl@) = (Y <) = (2m) 20 exp{~(10g2)*2H {250y
This is called the standard log-normal distribution.
(b) Compute all moments E(Y*), k=1,2,....

(c) Let a € [-1,1] be a fixed parameter and define f, : R — R as follows

0 fz< O,
fal®) = {f(a:)(l + asin(2rlogz)) if > 0. W

Prove that f, is a probability density function and show that the moments of the corresponding
distribution don’t vary with the parameter a € [—1,1]. Thus, these different distributions have the
same sequence of moments.

Hint: Show [;° x* f(x)sin(2r logz) dz = 0, k € N by substituting z = exp(s + k).
Solution:

(a) Let y € Ry. Let F(y) =P(Y <y) =P(e* <y)=P(X <In(y)) = ®(In(y)). Then

ﬂw:@mw:wmwgzv%f“wwﬁ.

Note that we will not use this density function in the rest of this exercise — we will calculate
everything using the standard normal distribution.

(b) E(YF) = E(e*X) = M (k) = e**/2 where M(A) is the moment generating function of X, calculated
in class, see page 14 of the scanned lecture notes.

(¢) fa is non-negative, since 1+ asin(2w In(x) is non-negative for any a € [—1,1] and any « > 0. Recall
that we denote by Im(z) the imaginary part of the complex number z.

/00 2¥ f(z) sin(2mlog z) dz = E(Y " sin(2rlog Y)) = E(e*¥ sin(27X)) = E(eF¥Im(e2™¥)) =
0
E(Im(e®™HX)) = Tm (E(e(Q’THk)X )) = Im(M (27i + k)) = Im(e7P)7/2) =

Im(67(27r)2/2627rik6k2/2) () Im(e*(2“)2/2ek2/2) -0,
where in (x) we used that e2™* = 1 if k € N. Thus we have
/000 2k fo(z) dz W /OOO a* f(x) de + a/ooo 2¥ f(x) sin(2r log z) dz = BE(Y*) + 0.
In particular, fooo fa(z)dz =1, thus f, is indeed a probability density function.
Remark: Note that limg_, o (E(Yk)/k!)l/k = +oo follows from In(E(Y"*)) = k2/2 and In(k!) =~ kIn(k)

(see page 4 of scanned), thus the result of this exercise does not contradict the lemma stated and proved
on page 135-136 of the scanned.



2. Let X be a random variable and denote by p(t) := E(e®X) (¢t € R) its characteristic function. Let us
assume that —X ~ X i.e., we assume that the distribution of X is symmetric.
(a) Show that if limsup,_, (1 — ¢(t))/t* < 400 then E(X?) < +oo0.
Hint: For any u € Ry let f,(t) := L Calculate [3° 1= COb(m) fu(t)dt and use the monotone
convergence theorem to show that limuﬁoo fo 1= ‘”(t) fu(t)dt éJE(XZ).
(b) Show that if E(X?) < 400 then lim;_ (1 — ¢(t ))/t2 = 1E(X?). Hint: Dominated convergence.
(c) Show that ¢(t) = eI cannot be the characteristic function of a probability distribution if a > 2.

Solution:

(a) First note that [ f,(t)dt =1, because f,(-) is the p.d.f. of the sum of three i.i.d. EXP(u) random
variables (see HW3.3). Now let us calculate

> 1 — cos(t 3o S ;
/ Mfu( ) %/ (1 _ Cos(tm’))e—”t dt = %/ (1 _ Re(ezta:)>e—ut dt =
0 0 0
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Since —X ~ X, we have p(t) = E(cos(t

/O°O1 il JOFYRY —/()Oollli(‘i(’s(t)())fu(t)dt—/omz@(wsmfu(o e

), see page 86 of the lecture notes. Thus

12

> 1 —cos(tX) 1 X2u? \ 1 X?
E(/O t2 fu(t)dt>2E<X2+u2 7§E X2/u2+1)"°

where in (%) we note that Fubini is applicable because the integrand is non-negative (see page 114).

Now note that ﬁzﬂ > 0 and ﬁiﬂ is an increasing function of u, thus by the monotone
convergence theorem (see page 36) we have

, °°1f () 1 X2 1 X2 1 o
1 » lim —E{——— ) =-E( lim —————— | = ZE(X?).
A [ fde =l g (Xz/u2+1) 5 (ugngoxz/um S XD

Also note that if limsup,_,, (1 — ¢(t))/t? < 400 then actually sup,cp (1 — ¢(t))/t? = M < +o0,
therefore for any u € R, we have

/Oool ()fu dt</ Mf,(t)dt = M/ fu(t)dt = M,

thus E(X?2) < 2M < +o0.
(b) (1—(t))/t> =E((1 - cos(tX))/t?) and 0 < 1 — cos(y) < 3y, thus 0 < (1 — cos(tX))/t* < 1 X2
Now if E(X?) < +oo then by dominated convergence (see page 37) we have

1 1 — cos(tX 1— cos(tX)\ (s
tim 2220 g (L2 0EX) (g, L 0SEX)) 0 L oy
t—0 2 t—0 12 t—0 t2 2

where (xx) follows by applying L’Hospital’s rule twice.
(c) If (t) = e I”  where a > 2, and if we indirectly assume that ¢ is the characteristic function of

some random variable X then lim,_,o 2= ‘P( ) = 0 implies (using (a) and (b)) that E(X2) = 0, thus
P(X =0) =1, thus p(t) =1, a contradlctlon. See page 147. See also HWT7.1(b).

Remark: Let us assume —X ~ X. Putting together (a) and (b) we see that limsup,_,, (1 — ¢(t))/t? <

400 if and only if E(X?) < +oo. However let us note that limsup,_,, (1 — ¢(t))/[t] < +oo is not
equivalent to E(]X]) < +o0, as we now explain. First note that E(]X|) < 400 does imply that ¢ is
differentiable (see page 90) and thus lim,_¢ (1 — ¢(t))/t = —¢'(0) = —iE(X) = 0. But if X ~ CAU(1)
then ¢(t) = e~ I* and thus limsupt_m (1—(t))/It| = 1, however E(|X|) = 400, see page 105. Note that

if =X ~ X, then E(|X]) =2 [;° ! tﬁ(t) dt (even if one side is infinite), see page 113-114.




3. Let X1, X5,... be independent random variables with the following distributions

1 mP —1
= — ]P Xm = = -,
2mp’ ( 0) mP

and denote S,, = X7 + -+ + X,,. Prove the following statements.

(a) If B > 1, then there exists a random variable S, so that S,, — S, almost surely.
Hint: Use Borel-Catelli.
(b) If B < 1, then
Sh

with some appropriately chosen constant ¢ € (0,00). Find ¢. Hint: Use Lindeberg.

(¢) If 5 =1, then S,,/n = &£, where ¢ is a random variable with characteristic function

E () = exp <— /O1 lcos(ts)ds> : (3)

S

Solution:

(a) If B > 1, then > P(X,, # 0) = > >°_ m? < oo, and due to the Borel-Cantelli Lemma

v := max{m : X,,, # 0} < oo, almost surely. Therefore lim, o0 > 1 Xm = o1 X = Soo
exists almost surely.

(b) If B € (0,1) we apply Lindeberg. First note that E(X,,) = 0 and Var(X,,) = E(X2,) = m?~~.

n 3—

B
2-8 _ 2-p 2-py _ I 2-p
= Var(S E m / dz 4+ O(n )73_6+(9(n ).

We check Lindeberg’s condition. Let € > 0 be fixed. For n sufficiently large, n? < eo? (since 3 < 1),
and for m < n, we have P(X2, < n?) = 1, thus P(X2, < e02) = 1. Therefore

: el 2
nlgr;oaz ZE 1[X2 > ea?]] = 0.

From this (and Slutsky) the result (2) follows, with the value of the constant ¢ = (3 — 3)~1/2.

1—cos(mt)

(¢) We first compute the characteristic functions. We have @, (t) := E(e"Xm) =1 — =—= and
- L 1 — cos(2¢) - 11— cos(2t)
s = [Lonte) = IT (1= =2 = ] (1- =5 2) @
m=1 m=1 m=1 n

We will use HW5.2 to show lim,,_,oc E(e**57/") = E (e'*) (this will also show that the r.h.s. of (3)
is indeed the characteristic function of a random variable by the theorem stated on page 108).

Using the notation of HW5.2 let us fix ¢ € [0, +00) and define y,, ,, = — 2 Locoslid)

n
n

Observe that ¥, < 0 and sup, 1=cos(s) o from which limy, o maxi<m<n |[Yn,m| = 0 follows.

Also note that limy, oo > 1 Ynom = — fol lf%s(ts) ds by the definition of Riemannian integration.
This also shows that sup,, > _ | [Yn,m| < 00.
Thus all of the conditions of HW5.2 are satisfied, thus lim,,_, E(e”sn/ " =FE (e“é) follows.

Remark: We did not have time to better understand the limiting distribution & that appears in (3)
because the semester is over. Let me just say that the distribution of £ is a so-called infinitely divisible
distribution and £ also appears in a slightly modified version of the one-dimensional Holtsmark problem.



