Limit/large dev. thms. HW assignment 9. SOLUTION

1. The log-normal distribution is not determined by its moments (see page 135 of scanned).
(a) Let $X \sim \mathcal{N}(0,1)$ and $Y=e^{X}$. Prove that

$$
f(x):=\frac{\mathrm{d}}{\mathrm{~d} x} \mathbb{P}(Y \leq x)=(2 \pi)^{-1 / 2} x^{-1} \exp \left\{-(\log x)^{2} / 2\right\} \mathbb{1}_{\{x>0\}} .
$$

This is called the standard log-normal distribution.
(b) Compute all moments $\mathbb{E}\left(Y^{k}\right), k=1,2, \ldots$
(c) Let $a \in[-1,1]$ be a fixed parameter and define $f_{a}: \mathbb{R} \rightarrow \mathbb{R}_{+}$as follows

$$
f_{a}(x)= \begin{cases}0 & \text { if } x<0 \tag{1}\\ f(x)(1+a \sin (2 \pi \log x)) & \text { if } x \geq 0\end{cases}
$$

Prove that f_{a} is a probability density function and show that the moments of the corresponding distribution don't vary with the parameter $a \in[-1,1]$. Thus, these different distributions have the same sequence of moments.
Hint: Show $\int_{0}^{\infty} x^{k} f(x) \sin (2 \pi \log x) \mathrm{d} x=0, k \in \mathbb{N}$ by substituting $x=\exp (s+k)$.

Solution:

(a) Let $y \in \mathbb{R}_{+}$. Let $F(y)=\mathbb{P}(Y \leq y)=\mathbb{P}\left(e^{X} \leq y\right)=\mathbb{P}(X \leq \ln (y))=\Phi(\ln (y))$. Then

$$
f(y)=\frac{\mathrm{d}}{\mathrm{~d} y} F(y)=\varphi(\ln (y)) \frac{1}{y}=\frac{1}{\sqrt{2 \pi}} e^{-(\ln (y))^{2} / 2} \frac{1}{y} .
$$

Note that we will not use this density function in the rest of this exercise - we will calculate everything using the standard normal distribution.
(b) $\mathbb{E}\left(Y^{k}\right)=\mathbb{E}\left(e^{k X}\right)=M(k)=e^{k^{2} / 2}$, where $M(\lambda)$ is the moment generating function of X, calculated in class, see page 14 of the scanned lecture notes.
(c) f_{a} is non-negative, since $1+a \sin (2 \pi \ln (x)$ is non-negative for any $a \in[-1,1]$ and any $x>0$. Recall that we denote by $\operatorname{Im}(z)$ the imaginary part of the complex number z.

$$
\begin{array}{r}
\int_{0}^{\infty} x^{k} f(x) \sin (2 \pi \log x) \mathrm{d} x=\mathbb{E}\left(Y^{k} \sin (2 \pi \log Y)\right)=\mathbb{E}\left(e^{k X} \sin (2 \pi X)\right)=\mathbb{E}\left(e^{k X} \operatorname{Im}\left(e^{2 \pi i X}\right)\right)= \\
\mathbb{E}\left(\operatorname{Im}\left(e^{(2 \pi i+k) X}\right)\right)=\operatorname{Im}\left(\mathbb{E}\left(e^{(2 \pi i+k) X}\right)\right)=\operatorname{Im}(M(2 \pi i+k))=\operatorname{Im}\left(e^{(2 \pi i+k)^{2} / 2}\right)= \\
\operatorname{Im}\left(e^{-(2 \pi)^{2} / 2} e^{2 \pi i k} e^{k^{2} / 2}\right) \stackrel{(*)}{=} \operatorname{Im}\left(e^{-(2 \pi)^{2} / 2} e^{k^{2} / 2}\right)=0
\end{array}
$$

where in $(*)$ we used that $e^{2 \pi i k}=1$ if $k \in \mathbb{N}$. Thus we have

$$
\int_{0}^{\infty} x^{k} f_{a}(x) \mathrm{d} x \stackrel{(1)}{=} \int_{0}^{\infty} x^{k} f(x) \mathrm{d} x+a \int_{0}^{\infty} x^{k} f(x) \sin (2 \pi \log x) \mathrm{d} x=\mathbb{E}\left(Y^{k}\right)+0
$$

In particular, $\int_{0}^{\infty} f_{a}(x) \mathrm{d} x=1$, thus f_{a} is indeed a probability density function.
Remark: Note that $\lim _{k \rightarrow \infty}\left(\mathbb{E}\left(Y^{k}\right) / k!\right)^{1 / k}=+\infty$ follows from $\ln \left(\mathbb{E}\left(Y^{k}\right)\right)=k^{2} / 2$ and $\ln (k!) \approx k \ln (k)$ (see page 4 of scanned), thus the result of this exercise does not contradict the lemma stated and proved on page 135-136 of the scanned.
2. Let X be a random variable and denote by $\varphi(t):=\mathbb{E}\left(e^{i t X}\right)(t \in \mathbb{R})$ its characteristic function. Let us assume that $-X \sim X$, i.e., we assume that the distribution of X is symmetric.
(a) Show that if $\lim \sup _{t \rightarrow 0}(1-\varphi(t)) / t^{2}<+\infty$ then $\mathbb{E}\left(X^{2}\right)<+\infty$.

Hint: For any $u \in \mathbb{R}_{+}$let $f_{u}(t):=\frac{u^{3} t^{2} e^{-u t}}{2}$. Calculate $\int_{0}^{\infty} \frac{1-\cos (t x)}{t^{2}} f_{u}(t) \mathrm{d} t$ and use the monotone convergence theorem to show that $\lim _{u \rightarrow \infty} \int_{0}^{\infty} \frac{1-\varphi(t)}{t^{2}} f_{u}(t) \mathrm{d} t=\frac{1}{2} \mathbb{E}\left(X^{2}\right)$.
(b) Show that if $\mathbb{E}\left(X^{2}\right)<+\infty$ then $\lim _{t \rightarrow 0}(1-\varphi(t)) / t^{2}=\frac{1}{2} \mathbb{E}\left(X^{2}\right)$. Hint: Dominated convergence.
(c) Show that $\varphi(t)=e^{-c|t|^{\alpha}}$ cannot be the characteristic function of a probability distribution if $\alpha>2$.

Solution:

(a) First note that $\int_{0}^{\infty} f_{u}(t) \mathrm{d} t=1$, because $f_{u}(\cdot)$ is the p.d.f. of the sum of three i.i.d. $\operatorname{EXP}(u)$ random variables (see HW3.3). Now let us calculate

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{1-\cos (t x)}{t^{2}} f_{u}(t) \mathrm{d} t=\frac{u^{3}}{2} \int_{0}^{\infty}(1-\cos (t x)) e^{-u t} \mathrm{~d} t=\frac{u^{3}}{2} \int_{0}^{\infty}\left(1-\operatorname{Re}\left(e^{i t x}\right)\right) e^{-u t} \mathrm{~d} t= \\
& \frac{u^{3}}{2} \operatorname{Re}\left(\int_{0}^{\infty} e^{-u t}-e^{(i x-u) t} \mathrm{~d} t\right)=\frac{u^{3}}{2} \operatorname{Re}\left(\frac{1}{u}+\frac{1}{i x-u}\right)=\frac{u^{3}}{2} \operatorname{Re}\left(\frac{1}{u}+\frac{-i x-u}{x^{2}+u^{2}}\right)= \\
& \frac{u^{3}}{2}\left(\frac{1}{u}+\frac{-u}{x^{2}+u^{2}}\right)= \frac{1}{2}\left(u^{2}-\frac{u^{4}}{x^{2}+u^{2}}\right)=\frac{1}{2}\left(\frac{x^{2} u^{2}+u^{4}-u^{4}}{x^{2}+u^{2}}\right)=\frac{1}{2} \frac{x^{2} u^{2}}{x^{2}+u^{2}} .
\end{aligned}
$$

Since $-X \sim X$, we have $\varphi(t)=\mathbb{E}(\cos (t X))$, see page 86 of the lecture notes. Thus

$$
\begin{aligned}
\int_{0}^{\infty} \frac{1-\varphi(t)}{t^{2}} f_{u}(t) \mathrm{d} t= & \int_{0}^{\infty} \frac{1-\mathbb{E}(\cos (t X))}{t^{2}} f_{u}(t) \mathrm{d} t=\int_{0}^{\infty} \mathbb{E}\left(\frac{1-\cos (t X)}{t^{2}} f_{u}(t)\right) \mathrm{d} t \stackrel{(*)}{=} \\
& \mathbb{E}\left(\int_{0}^{\infty} \frac{1-\cos (t X)}{t^{2}} f_{u}(t) \mathrm{d} t\right)=\frac{1}{2} \mathbb{E}\left(\frac{X^{2} u^{2}}{X^{2}+u^{2}}\right)=\frac{1}{2} \mathbb{E}\left(\frac{X^{2}}{X^{2} / u^{2}+1}\right)
\end{aligned}
$$

where in $(*)$ we note that Fubini is applicable because the integrand is non-negative (see page 114). Now note that $\frac{X^{2}}{X^{2} / u^{2}+1} \geq 0$ and $\frac{X^{2}}{X^{2} / u^{2}+1}$ is an increasing function of u, thus by the monotone convergence theorem (see page 36) we have

$$
\lim _{u \rightarrow \infty} \int_{0}^{\infty} \frac{1-\varphi(t)}{t^{2}} f_{u}(t) \mathrm{d} t=\lim _{u \rightarrow \infty} \frac{1}{2} \mathbb{E}\left(\frac{X^{2}}{X^{2} / u^{2}+1}\right)=\frac{1}{2} \mathbb{E}\left(\lim _{u \rightarrow \infty} \frac{X^{2}}{X^{2} / u^{2}+1}\right)=\frac{1}{2} \mathbb{E}\left(X^{2}\right)
$$

Also note that if $\limsup _{t \rightarrow 0}(1-\varphi(t)) / t^{2}<+\infty$ then actually $\sup _{t \in \mathbb{R}}(1-\varphi(t)) / t^{2}=M<+\infty$, therefore for any $u \in \mathbb{R}_{+}$we have

$$
\int_{0}^{\infty} \frac{1-\varphi(t)}{t^{2}} f_{u}(t) \mathrm{d} t \leq \int_{0}^{\infty} M f_{u}(t) \mathrm{d} t=M \int_{0}^{\infty} f_{u}(t) \mathrm{d} t=M
$$

thus $\mathbb{E}\left(X^{2}\right) \leq 2 M<+\infty$.
(b) $(1-\varphi(t)) / t^{2}=\mathbb{E}\left((1-\cos (t X)) / t^{2}\right)$ and $0 \leq 1-\cos (y) \leq \frac{1}{2} y^{2}$, thus $0 \leq(1-\cos (t X)) / t^{2} \leq \frac{1}{2} X^{2}$. Now if $\mathbb{E}\left(X^{2}\right)<+\infty$ then by dominated convergence (see page 37) we have

$$
\lim _{t \rightarrow 0} \frac{1-\varphi(t)}{t^{2}}=\lim _{t \rightarrow 0} \mathbb{E}\left(\frac{1-\cos (t X)}{t^{2}}\right)=\mathbb{E}\left(\lim _{t \rightarrow 0} \frac{1-\cos (t X)}{t^{2}}\right) \stackrel{(* *)}{=} \mathbb{E}\left(\frac{1}{2} X^{2}\right)
$$

where $(* *)$ follows by applying L'Hospital's rule twice.
(c) If $\varphi(t)=e^{-c|t|^{\alpha}}$, where $\alpha>2$, and if we indirectly assume that φ is the characteristic function of some random variable X then $\lim _{t \rightarrow 0} \frac{1-\varphi(t)}{t^{2}}=0$ implies (using (a) and (b)) that $\mathbb{E}\left(X^{2}\right)=0$, thus $\mathbb{P}(X=0)=1$, thus $\varphi(t) \equiv 1$, a contradiction. See page 147. See also HW7.1(b).

Remark: Let us assume $-X \sim X$. Putting together (a) and (b) we see that $\limsup _{t \rightarrow 0}(1-\varphi(t)) / t^{2}<$ $+\infty$ if and only if $\mathbb{E}\left(X^{2}\right)<+\infty$. However let us note that $\limsup _{t \rightarrow 0}(1-\varphi(t)) /|t|<+\infty$ is not equivalent to $\mathbb{E}(|X|)<+\infty$, as we now explain. First note that $\mathbb{E}(|X|)<+\infty$ does imply that φ is differentiable (see page 90) and thus $\lim _{t \rightarrow 0}(1-\varphi(t)) / t=-\varphi^{\prime}(0)=-i \mathbb{E}(X)=0$. But if $X \sim \operatorname{CAU}(1)$ then $\varphi(t)=e^{-|t|}$ and thus $\limsup _{t \rightarrow 0}(1-\varphi(t)) /|t|=1$, however $\mathbb{E}(|X|)=+\infty$, see page 105 . Note that if $-X \sim X$, then $\mathbb{E}(|X|)=\frac{2}{\pi} \int_{0}^{\infty} \frac{1-\varphi(t)}{t^{2}} \mathrm{~d} t$ (even if one side is infinite), see page 113-114.
3. Let X_{1}, X_{2}, \ldots be independent random variables with the following distributions

$$
\mathbb{P}\left(X_{m}= \pm m\right)=\frac{1}{2 m^{\beta}}, \quad \mathbb{P}\left(X_{m}=0\right)=\frac{m^{\beta}-1}{m^{\beta}}
$$

and denote $S_{n}=X_{1}+\cdots+X_{n}$. Prove the following statements.
(a) If $\beta>1$, then there exists a random variable S_{∞}, so that $S_{n} \rightarrow S_{\infty}$, almost surely. Hint: Use Borel-Catelli.
(b) If $\beta<1$, then

$$
\begin{equation*}
\frac{S_{n}}{c n^{(3-\beta) / 2}} \Rightarrow \mathcal{N}(0,1) \tag{2}
\end{equation*}
$$

with some appropriately chosen constant $c \in(0, \infty)$. Find c. Hint: Use Lindeberg.
(c) If $\beta=1$, then $S_{n} / n \Rightarrow \xi$, where ξ is a random variable with characteristic function

$$
\begin{equation*}
\mathbb{E}\left(e^{i t \xi}\right)=\exp \left(-\int_{0}^{1} \frac{1-\cos (t s)}{s} d s\right) \tag{3}
\end{equation*}
$$

Solution:

(a) If $\beta>1$, then $\sum_{m=1}^{\infty} \mathbb{P}\left(X_{m} \neq 0\right)=\sum_{m=1}^{\infty} m^{-\beta}<\infty$, and due to the Borel-Cantelli Lemma $\nu:=\max \left\{m: X_{m} \neq 0\right\}<\infty$, almost surely. Therefore $\lim _{n \rightarrow \infty} \sum_{m=1}^{n} X_{m}=\sum_{m=1}^{\nu} X_{m}=: S_{\infty}$ exists almost surely.
(b) If $\beta \in(0,1)$ we apply Lindeberg. First note that $\mathbb{E}\left(X_{m}\right)=0$ and $\operatorname{Var}\left(X_{m}\right)=\mathbb{E}\left(X_{m}^{2}\right)=m^{2-\beta}$.

$$
\sigma_{n}^{2}:=\operatorname{Var}\left(S_{n}\right)=\sum_{m=1}^{n} m^{2-\beta}=\int_{0}^{n} x^{2-\beta} \mathrm{d} x+\mathcal{O}\left(n^{2-\beta}\right)=\frac{n^{3-\beta}}{3-\beta}+\mathcal{O}\left(n^{2-\beta}\right)
$$

We check Lindeberg's condition. Let $\varepsilon>0$ be fixed. For n sufficiently large, $n^{2}<\varepsilon \sigma_{n}^{2}$ (since $\beta<1$), and for $m \leq n$, we have $\mathbb{P}\left(X_{m}^{2} \leq n^{2}\right)=1$, thus $\mathbb{P}\left(X_{m}^{2}<\varepsilon \sigma_{n}^{2}\right)=1$. Therefore

$$
\lim _{n \rightarrow \infty} \frac{1}{\sigma_{n}^{2}} \sum_{m=1}^{n} \mathbb{E}\left[X_{m}^{2} \mathbb{1}\left[X_{m}^{2}>\varepsilon \sigma_{n}^{2}\right]\right]=0
$$

From this (and Slutsky) the result (2) follows, with the value of the constant $c=(3-\beta)^{-1 / 2}$.
(c) We first compute the characteristic functions. We have $\varphi_{m}(t):=\mathbb{E}\left(e^{i t X_{m}}\right)=1-\frac{1-\cos (m t)}{m}$ and

$$
\begin{equation*}
\mathbb{E}\left(e^{i t S_{n} / n}\right)=\prod_{m=1}^{n} \varphi_{m}(t / n)=\prod_{m=1}^{n}\left(1-\frac{1-\cos \left(\frac{m}{n} t\right)}{m}\right)=\prod_{m=1}^{n}\left(1-\frac{1}{n} \frac{1-\cos \left(\frac{m}{n} t\right)}{\frac{m}{n}}\right) \tag{4}
\end{equation*}
$$

We will use HW5.2 to show $\lim _{n \rightarrow \infty} \mathbb{E}\left(e^{i t S_{n} / n}\right)=\mathbb{E}\left(e^{i t \xi}\right)$ (this will also show that the r.h.s. of (3) is indeed the characteristic function of a random variable by the theorem stated on page 108).
Using the notation of HW5.2 let us fix $t \in[0,+\infty)$ and define $y_{n, m}=-\frac{1}{n} \frac{1-\cos \left(\frac{m}{n} t\right)}{\frac{m}{n}}$.
Observe that $y_{n, m} \leq 0$ and $\sup _{s>0} \frac{1-\cos (s)}{s}<\infty$ from which $\lim _{n \rightarrow \infty} \max _{1 \leq m \leq n}\left|y_{n, m}\right|=0$ follows.
Also note that $\lim _{n \rightarrow \infty} \sum_{m=1}^{n} y_{n, m}=-\int_{0}^{1} \frac{1-\cos (t s)}{s} \mathrm{~d} s$ by the definition of Riemannian integration. This also shows that $\sup _{n} \sum_{m=1}^{n}\left|y_{n, m}\right|<\infty$.
Thus all of the conditions of HW5.2 are satisfied, thus $\lim _{n \rightarrow \infty} \mathbb{E}\left(e^{i t S_{n} / n}\right)=\mathbb{E}\left(e^{i t \xi}\right)$ follows.
Remark: We did not have time to better understand the limiting distribution ξ that appears in (3) because the semester is over. Let me just say that the distribution of ξ is a so-called infinitely divisible distribution and ξ also appears in a slightly modified version of the one-dimensional Holtsmark problem.

