Limit/large dev. thms. HW assignment 9. Due Wednesday, May 8.

Note: Each of the 3 questions is worth 15 marks. Write your name and Neptun code on each piece of paper that you submit. Separate the solutions of different exercises with a horizontal line. Highlight the final answer. If you submit your homework electronically, pdf format is preferred.

1. The log-normal distribution is not determined by its moments (see page 135 of scanned).
(a) Let $X \sim \mathcal{N}(0,1)$ and $Y=e^{X}$. Prove that

$$
f(x):=\frac{\mathrm{d}}{\mathrm{~d} x} \mathbb{P}(Y \leq x)=(2 \pi)^{-1 / 2} x^{-1} \exp \left\{-(\log x)^{2} / 2\right\} \mathbb{1}_{\{x>0\}} .
$$

This is called the standard log-normal distribution.
(b) Compute all moments $\mathbb{E}\left(Y^{k}\right), k=1,2, \ldots$
(c) Let $a \in[-1,1]$ be a fixed parameter and define $f_{a}: \mathbb{R} \rightarrow \mathbb{R}_{+}$as follows

$$
f_{a}(x)= \begin{cases}0 & \text { if } x<0 \\ f(x)(1+a \sin (2 \pi \log x)) & \text { if } x \geq 0\end{cases}
$$

Prove that f_{a} is a probability density function and show that the moments of the corresponding distribution don't vary with the parameter $a \in[-1,1]$. Thus, these different distributions have the same sequence of moments.
Hint: Show $\int_{0}^{\infty} x^{k} f(x) \sin (2 \pi \log x) \mathrm{d} x=0, k \in \mathbb{N}$ by substituting $x=\exp (s+k)$.
2. Let X be a random variable and denote by $\varphi(t):=\mathbb{E}\left(e^{i t X}\right)(t \in \mathbb{R})$ its characteristic function. Let us assume that $-X \sim X$, i.e., we assume that the distribution of X is symmetric.
(a) Show that if $\lim \sup _{t \rightarrow 0}(1-\varphi(t)) / t^{2}<+\infty$ then $\mathbb{E}\left(X^{2}\right)<+\infty$.

Hint: For any $u \in \mathbb{R}_{+}$let $f_{u}(t):=\frac{u^{3} t^{2} e^{-u t}}{2}$. Calculate $\int_{0}^{\infty} \frac{1-\cos (t x)}{t^{2}} f_{u}(t) \mathrm{d} t$ and use the monotone convergence theorem to show that $\lim _{u \rightarrow \infty} \int_{0}^{\infty} \frac{1-\varphi(t)}{t^{2}} f_{u}(t) \mathrm{d} t=\frac{1}{2} \mathbb{E}\left(X^{2}\right)$.
(b) Show that if $\mathbb{E}\left(X^{2}\right)<+\infty$ then $\lim _{t \rightarrow 0}(1-\varphi(t)) / t^{2}=\frac{1}{2} \mathbb{E}\left(X^{2}\right)$. Hint: Dominated convergence.
(c) Show that $\varphi(t)=e^{-c|t|^{\alpha}}$ cannot be the characteristic function of a probability distribution if $\alpha>2$.
3. Let X_{1}, X_{2}, \ldots be independent random variables with the following distributions

$$
\mathbb{P}\left(X_{m}= \pm m\right)=\frac{1}{2 m^{\beta}}, \quad \mathbb{P}\left(X_{m}=0\right)=\frac{m^{\beta}-1}{m^{\beta}}
$$

and denote $S_{n}=X_{1}+\cdots+X_{n}$. Prove the following statements.
(a) If $\beta>1$, then there exists a random variable S_{∞}, so that $S_{n} \rightarrow S_{\infty}$, almost surely. Hint: Use Borel-Catelli.
(b) If $\beta<1$, then

$$
\frac{S_{n}}{c n^{(3-\beta) / 2}} \Rightarrow \mathcal{N}(0,1),
$$

with some appropriately chosen constant $c \in(0, \infty)$. Find c. Hint: Use Lindeberg.
(c) If $\beta=1$, then $S_{n} / n \Rightarrow \xi$, where ξ is a random variable with characteristic function

$$
\mathbb{E}\left(e^{i t \xi}\right)=\exp \left(-\int_{0}^{1} \frac{1-\cos (t s)}{s} d s\right)
$$

