Limit/large dev. thms. HW assignment 8. SOLUTION

1. Let $F(x)=\mathbb{P}(X \leq x)$. Recall from page 39 of the scanned lecture notes that F is right-continuous. Let

$$
G(x)=\frac{1}{2} \lim _{\varepsilon \rightarrow 0} F(x-\varepsilon)+\frac{1}{2} \lim _{\varepsilon \rightarrow 0} F(x+\varepsilon)=\frac{1}{2}\left(F\left(x_{-}\right)+F(x)\right), \quad x \in \mathbb{R}
$$

In particular, if x is a point of continuity of F then $G(x)=F(x)$. Let $\varphi(t)=\mathbb{E}\left(e^{i t X}\right)$. Let Y denote an independent random variable with standard normal distribution. For $\sigma \in \mathbb{R}_{+}$let F_{σ} denote the cumulative distribution function of $X+\sigma Y$ (see page 102 of the scanned lecture notes).
(a) Use the dominated convergence theorem to show that $\lim _{\sigma \rightarrow 0} F_{\sigma}(x)=G(x)$.

Hint: Use one of the formulas for F_{σ} from page 102 of the scanned lecture notes.
(b) For any $a \leq b \in \mathbb{R}$ give an integral formula for $F_{\sigma}(b)-F_{\sigma}(a)$ in terms of φ.

Hint: Use Fubini and the lemma from page 103 which gives a formula for $f_{\sigma}=F_{\sigma}^{\prime}$ in terms of φ.
(c) Use (a) and (b) to show that for any $a \leq b \in \mathbb{R}$ we have

$$
\frac{1}{2} \mathbb{P}(X=a)+\mathbb{P}(a<X<b)+\frac{1}{2} \mathbb{P}(X=b)=\lim _{\sigma \rightarrow 0} \frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{e^{-i b t}-e^{-i a t}}{-i t} e^{-\sigma^{2} t^{2} / 2} \varphi(t) \mathrm{d} t .
$$

(d) Assume further that the distribution of X is absolutely continuous and denote by f the p.d.f. of X. Let us assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous. Recall that we denote by f_{σ} the p.d.f. of $X+\sigma Y$. Write down a formula for f_{σ} using convolution (see page 20 of the scanned lecture notes) and show that $\lim _{\sigma \rightarrow 0} f_{\sigma}(x)=f(x)$ for any $x \in \mathbb{R}$ (see page 104).
Remark: f is not necessarily bounded! Also note that the solution of part (d) of this exercise has nothing to do with the solution of the results of parts (a),(b) and (c).

Solution:

(a) We know from page 102 of the scanned lecture notes that $F_{\sigma}(x)=\mathbb{E}\left(\Phi\left(\frac{x-X}{\sigma}\right)\right)$, where $\Phi(x)$ denotes the c.d.f. of $\mathcal{N}(0,1)$. Let us fix $x \in \mathbb{R}$. Note that $0 \leq \Phi\left(\frac{x-X}{\sigma}\right) \leq 1$ and

$$
\lim _{\sigma \rightarrow 0} \Phi\left(\frac{x-X}{\sigma}\right)= \begin{cases}0 & \text { if } X>x \\ \frac{1}{2} & \text { if } X=x \\ 1 & \text { if } X<x\end{cases}
$$

In other words: $\lim _{\sigma \rightarrow 0} \Phi\left(\frac{x-X}{\sigma}\right)=\frac{1}{2} \mathbb{1}[X=x]+\mathbb{1}[X<x]=\frac{1}{2}(\mathbb{1}[X<x]+\mathbb{1}[X \leq x])$. Therefore, by dominated convergence we get

$$
\begin{aligned}
& \lim _{\sigma \rightarrow 0} F_{\sigma}(x)=\lim _{\sigma \rightarrow 0} \mathbb{E}\left[\Phi\left(\frac{x-X}{\sigma}\right)\right]=\mathbb{E}\left[\lim _{\sigma \rightarrow 0} \Phi\left(\frac{x-X}{\sigma}\right)\right]= \\
& \mathbb{E}\left[\frac{1}{2}(\mathbb{1}[X<x]+\mathbb{1}[X \leq x])\right]=\frac{1}{2}(\mathbb{P}[X<x]+\mathbb{P}[X \leq x])=\frac{1}{2}\left(F\left(x_{-}\right)+F(x)\right)=G(x)
\end{aligned}
$$

(b) In the equation marked by $(*)$ below, we use Fubini, which is applicable, since $\left|e^{-i t x} e^{-t^{2} \sigma^{2} / 2} \varphi(t)\right| \leq$ $e^{-\sigma^{2} t^{2} / 2}$, and $\int_{a}^{b} \int_{-\infty}^{+\infty} e^{-t^{2} \sigma^{2} / 2} \mathrm{~d} t \mathrm{~d} x<+\infty$:

$$
\begin{aligned}
F_{\sigma}(b)-F_{\sigma}(a)= & \int_{a}^{b} f_{\sigma}(x) \mathrm{d} x=\int_{a}^{b} \frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{-i t x} e^{-t^{2} \sigma^{2} / 2} \varphi(t) \mathrm{d} t \mathrm{~d} x \stackrel{(*)}{=} \\
& \frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{-t^{2} \sigma^{2} / 2} \varphi(t) \int_{a}^{b} e^{-i t x} \mathrm{~d} x \mathrm{~d} t=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-\sigma^{2} t^{2} / 2} \varphi(t) \frac{e^{-i b t}-e^{-i a t}}{-i t} \mathrm{~d} t .
\end{aligned}
$$

(c) $\lim _{\sigma \rightarrow 0}\left(F_{\sigma}(b)-F_{\sigma}(a)\right)=G(b)-G(a)=\frac{1}{2} \mathbb{P}(X=a)+\mathbb{P}(a<X<b)+\frac{1}{2} \mathbb{P}(X=b)$
(d) We denote by φ_{σ} the p.d.f. of $\mathcal{N}\left(0, \sigma^{2}\right)$, thus $\varphi_{\sigma}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-x^{2} / 2 \sigma^{2}}$. Let us fix $x \in \mathbb{R}$. It is enough to show that

$$
\begin{equation*}
\limsup _{\sigma \rightarrow 0}\left|f_{\sigma}(x)-f(x)\right| \leq \epsilon \tag{1}
\end{equation*}
$$

for any $\varepsilon>0$, so let us fix $\varepsilon>0$ and let $\delta>0$ be so small that $|f(y)-f(x)| \leq \varepsilon$ if $|y-x| \leq \delta$.
Then $f_{\sigma}(x)=\int_{-\infty}^{\infty} f(y) \varphi_{\sigma}(x-y) \mathrm{d} y=A_{\sigma}+B_{\sigma}$, where

$$
\begin{equation*}
A_{\sigma}=\int_{x-\delta}^{x+\delta} f(y) \varphi_{\sigma}(x-y) \mathrm{d} y, \quad B_{\sigma}=\int_{-\infty}^{\infty} \mathbb{1}[|y-x|>\delta] f(y) \varphi_{\sigma}(x-y) \mathrm{d} y \tag{2}
\end{equation*}
$$

In order to prove (1), it is enough to show $\lim _{\sigma \rightarrow 0} B_{\sigma}=0$ and $\limsup _{\sigma \rightarrow 0}\left|A_{\sigma}-f(x)\right| \leq \varepsilon$.

$$
\begin{equation*}
\lim _{\sigma \rightarrow 0} B_{\sigma} \leq \lim _{\sigma \rightarrow 0}\left(\sup _{|z| \geq \delta} \varphi_{\sigma}(z)\right) \cdot \int_{-\infty}^{\infty} \mathbb{1}[|y-x|>\delta] f(y) \mathrm{d} y \leq 0 \cdot 1=0 \tag{3}
\end{equation*}
$$

It remains to show $\lim \sup _{\sigma \rightarrow 0}\left|A_{\sigma}-f(x)\right| \leq \varepsilon$.

$$
\begin{align*}
& A_{\sigma}-f(x)=\int_{x-\delta}^{x+\delta} f(y) \varphi_{\sigma}(x-y) \mathrm{d} y-\int_{-\infty}^{\infty} f(x) \varphi_{\sigma}(x-y) \mathrm{d} y= \\
& \int_{x-\delta}^{x+\delta}(f(y)-f(x)) \varphi_{\sigma}(x-y) \mathrm{d} y-f(x) \int_{-\infty}^{\infty} \mathbb{1}[|y-x|>\delta] \varphi_{\sigma}(x-y) \mathrm{d} y \tag{4}
\end{align*}
$$

The last term on the r.h.s. of (4) goes to zero as $\sigma \rightarrow 0$, because $\int_{-\infty}^{\infty} \mathbb{1}[|y-x|>\delta] \varphi_{\sigma}(x-y) \mathrm{d} y=$ $\mathbb{P}(|(x-\sigma Y)-x|>\delta)$, where $Y \sim \mathcal{N}(0,1)$, so it remains to bound

$$
\begin{equation*}
\left|\int_{x-\delta}^{x+\delta}(f(y)-f(x)) \varphi_{\sigma}(x-y) \mathrm{d} y\right| \leq \int_{x-\delta}^{x+\delta}|f(y)-f(x)| \varphi_{\sigma}(x-y) \mathrm{d} y \leq \int_{x-\delta}^{x+\delta} \varepsilon \varphi_{\sigma}(x-y) \mathrm{d} y \leq \varepsilon \tag{5}
\end{equation*}
$$

This completes the proof of $\limsup _{\sigma \rightarrow 0}\left|A_{\sigma}-f(x)\right| \leq \varepsilon$.
2. Let $\varphi(t)=\mathbb{E}\left(e^{i t X}\right)$. Show that the following functions are also characteristic functions:
(a) $\bar{\varphi}(t)$,
(b) $\varphi^{2}(t)$,
(c) $|\varphi(t)|^{2}$,
(d) $\operatorname{Re}(\varphi(t))$,
(e) $\frac{1}{2-\varphi(t)}$,
(f) $\int_{0}^{\infty} \varphi(s t) e^{-s} \mathrm{~d} s$

Hint: You don't have to use Bochner, each of these formulas have a probabilistic meaning.

Solution:

(a) $\bar{\varphi}(t)$ is the characteristic function of $-X$. Indeed: $\mathbb{E}\left(e^{i t(-X)}\right)=\mathbb{E}\left(e^{i(-t) X}\right)=\bar{\varphi}(t)$, see page 87 of the scanned lecture notes.
(b) $\varphi^{2}(t)$ is the characteristic function of $X_{1}+X_{2}$, where X_{1} and X_{2} are i.i.d. copies of X. Indeed: $\mathbb{E}\left(e^{i t\left(X_{1}+X_{2}\right)}\right)=\mathbb{E}\left(e^{i t X_{1}} e^{i t X_{2}}\right)=\mathbb{E}\left(e^{i t X_{1}}\right) \mathbb{E}\left(e^{i t X_{2}}\right)=\varphi(t) \varphi(t)$.
(c) $|\varphi(t)|^{2}$ is the characteristic function of $X_{1}-X_{2}$, where where X_{1} and X_{2} are i.i.d. copies of X. Indeed: $\mathbb{E}\left(e^{i t\left(X_{1}-X_{2}\right)}\right)=\mathbb{E}\left(e^{i t X_{1}} e^{i t\left(-X_{2}\right)}\right)=\mathbb{E}\left(e^{i t X_{1}}\right) \mathbb{E}\left(e^{i t\left(-X_{2}\right)}\right)=\varphi(t) \bar{\varphi}(t)=|\varphi(t)|^{2}$.
(d) $\operatorname{Re}(\varphi(t))$ is the characteristic function of $X Y$, where Y is independent from X and $\mathbb{P}(Y=1)=$ $\mathbb{P}(Y=-1)=\frac{1}{2}$. Indeed: $\mathbb{E}\left(e^{i t X Y}\right)=\frac{1}{2} \mathbb{E}\left(e^{i t X}\right)+\frac{1}{2} \mathbb{E}\left(e^{i t(-X)}\right)=\frac{1}{2}(\varphi(t)+\bar{\varphi}(t))=\operatorname{Re}(\varphi(t))$.
(e) $\frac{1}{2-\varphi(t)}$ is the characteristic function of $X_{1}+X_{2}+\cdots+X_{N}$, where X_{1}, X_{2}, \ldots are i.i.d. copies of X and N is an independent random variable with pessimistic $\operatorname{GEO}\left(\frac{1}{2}\right)$ distribution. First note that the generating function of N is

$$
G(z)=\mathbb{E}\left(z^{N}\right)=\sum_{k=0}^{\infty} z^{k} \mathbb{P}(N=k)=\sum_{k=0}^{\infty} z^{k} 2^{-(k+1)}=\frac{1}{2} \sum_{k=0}^{\infty}\left(\frac{z}{2}\right)^{k}=\frac{1}{2} \frac{1}{1-z / 2}=\frac{1}{2-z}
$$

Then we can calculate

$$
\begin{aligned}
\mathbb{E}\left(e^{i t\left(X_{1}+X_{2}+\cdots+X_{N}\right)}\right)=\sum_{k=0}^{\infty} \mathbb{E}\left(e^{i t\left(X_{1}+X_{2}+\cdots+X_{k}\right)}\right) & \mathbb{P}(N=k)= \\
& \sum_{k=0}^{\infty}(\varphi(t))^{k} \mathbb{P}(N=k)=G(\varphi(t))=\frac{1}{2-\varphi(t)}
\end{aligned}
$$

(f) $\int_{0}^{\infty} \varphi(s t) e^{-s} \mathrm{~d} s$ is the characteristic function of $X Y$, where $Y \sim \operatorname{EXP}(1)$ is independent from X. Indeed, the density function of Y is $f(y)=e^{-y} \mathbb{1}[y \geq 0]$ and

$$
\mathbb{E}\left(e^{i t X Y}\right)=\int_{0}^{\infty} \mathbb{E}\left(e^{i t X Y} \mid Y=y\right) f(y) \mathrm{d} y=\int_{0}^{\infty} \mathbb{E}\left(e^{i t X y}\right) f(y) \mathrm{d} y=\int_{0}^{\infty} \varphi(y t) e^{-y} \mathrm{~d} y
$$

3. (a) Give a probabilistic meaning to the following trigonometric identity by interpreting both sides as a characteristic function:

$$
\frac{\sin (t)}{t}=\cos (t / 2) \frac{\sin (t / 2)}{t / 2}
$$

(b) By iterating the identity in (a) prove the following trigonometric identity:

$$
\frac{\sin (t)}{t}=\prod_{k=1}^{\infty} \cos \left(\frac{t}{2^{k}}\right)
$$

(c) Provide probabilistic interpretation (i.e. probabilistic proof) of the identity in (b).

Solution:

(a) If $Y \sim \mathrm{UNI}\left[-\frac{1}{2}, \frac{1}{2}\right]$ then $\varphi_{Y}(t)=\frac{\sin (t / 2)}{t / 2}$ (see page 89 of the scanned lecture notes).

If $\mathbb{P}\left(X=\frac{1}{2}\right)=\mathbb{P}\left(X=-\frac{1}{2}\right)=\frac{1}{2}$, then $\varphi_{X}(t)=\frac{1}{2} e^{i t / 2}+\frac{1}{2} e^{-i t / 2}=\cos (t / 2)$.
Now $Y-\frac{1}{2} \sim \mathrm{UNI}[-1,0]$ and $Y+\frac{1}{2} \sim \mathrm{UNI}[0,1]$, whence if X and Y are independent, then $X+Y \sim$ $\operatorname{UNI}[-1,1]$, therefore $\varphi_{X+Y}(t)=\sin (t) / t$. On the other hand, we have $\varphi_{X+Y}(t)=\varphi_{X}(t) \varphi_{Y}(t)$, thus

$$
\frac{\sin (t)}{t}=\varphi_{X+Y}(t)=\varphi_{X}(t) \varphi_{Y}(t)=\cos (t / 2) \frac{\sin (t / 2)}{t / 2}
$$

(b) Noting that $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$, we obtain

$$
\frac{\sin (t)}{t}=\cos (t / 2) \frac{\sin (t / 2)}{t / 2}=\cos (t / 2) \cos (t / 4) \frac{\sin (t / 4)}{t / 4}=\cdots=\prod_{k=1}^{\infty} \cos \left(\frac{t}{2^{k}}\right) .
$$

(c) We know that if $Z \sim \mathrm{UNI}[0,1]$ and if $\eta_{1}, \eta_{2}, \ldots$ are the digits in the binary expansion of Z, i.e.

$$
Z=\sum_{n=1}^{\infty} \eta_{n} 2^{-n}
$$

then $\eta_{1}, \eta_{2}, \ldots$ are i.i.d. with $\operatorname{BER}\left(\frac{1}{2}\right)$ distribution, i.e., $\mathbb{P}\left(X_{n}=1\right)=\mathbb{P}\left(X_{n}=0\right)=\frac{1}{2}$.
Thus

$$
2 Z-1=2 \sum_{n=1}^{\infty} \eta_{n} 2^{-n}-\sum_{n=1}^{\infty} 2^{-n}=\sum_{n=1}^{\infty} 2^{-n}\left(2 \eta_{n}-1\right)
$$

Now the characteristic function of $2 \eta_{n}-1$ is $\cos (t)$, thus

$$
\frac{\sin (t)}{t}=\mathbb{E}\left(e^{i t(2 Z-1)}\right)=\mathbb{E}\left(e^{i t\left(\sum_{n=1}^{\infty} 2^{-n}\left(2 \eta_{n}-1\right)\right)}\right)=\prod_{n=1}^{\infty} \mathbb{E}\left(e^{i t 2^{-n}\left(2 \eta_{n}-1\right)}\right)=\prod_{n=1}^{\infty} \cos \left(\frac{t}{2^{n}}\right) .
$$

