
Limit/large dev. thms. HW assignment 7, SOLUTIONS
1. (15 marks) Decide about the following functions R → C whether they are characteristic functions of

probability distributions or not.

(a)
1

1 + t2
, (b) exp(−t4), (c) sin(t), (d) cos(t), (e)

1 + cos t

2
, (f)

sin(t)

t
(g) 2

1− cos(t)

t2

Hint: You will NOT need to use Bochner’s theorem (page 88). To show that a function is not a
characteristic function, you need to use the properties that we have learnt on the April 7 lecture. To
show that it is a characteristic function of a random variable X, you have to find the distribution of X.
It is a wise idea to read the official solution of HW6.2 before you start solving this exercise.

Solution:

(a) This was solved in HW6.2(a): if f(x) = 1
2e

−|x| then
∫∞
−∞ eitxf(x) dx = 1

1+t2 .

(b) exp(−t4) is not a characteristic function, because if we assume that exp(−t4) = φ(t) = E(eitX) for
some X, then E(X2) = −φ′′(0) = 0, therefore X = 0, but E(eit0) = 1 ̸= exp(−t4), a contradiction.
Remark: This solution had a little gap in it. Namely, in the theorem on page 90 of the scanned
lecture notes, we only proved E(X2) = −φ′′(0) under the assumption E(X2) < +∞. In our current
case nothing guarantees that this theorem can be applied. In a later homework we will return to
this problem and fix the gap.

(c) sin(0) = 0 ̸= 1, so sin(t) cannot be a characteristic function.

(d) If P(X = 1) = P(X = −1) = 1
2 , then E(eitX) = 1

2e
it·1 + 1

2e
it·(−1) = cos(t).

(e) If P(X = 0) = 1
2 and P(X = 1) = P(X = −1) = 1

4 , then E(eitX) = 1
4e

it·1+ 1
2e

it·0+ 1
4e

it·(−1) = 1+cos t
2

(f) We have seen in class (see page 89 of scanned) that if X ∼ UNI[−1, 1] then E(eitX) = sin(t)
t .

(g) We have seen in HW6.2(b) that
(

sin(t/2)
t/2

)2

is the characteristic function of the sum of two indepen-

dent random variables with UNI[− 1
2 ,

1
2 ] distribution. Now(

sin(t/2)

t/2

)2

= 4
sin2(t/2)

t2
= 4

(1− cos(t))/2

t2
= 2

1− cos(t)

t2
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2. (10 marks) In this exercise
√
z denotes the complex analytic function which is defined for all complex

numbers except for the negative real numbers in the following way: if Im(z) ≥ 0 then arg(
√
z) = 1

2arg(z)
and |

√
z| =

√
|z|, moreover we extend the function to the half-plane Im(z) ≤ 0 by the identity

√
z̄ =

√
z.

Then of course z ≥ 0 implies
√
z ≥ 0, so this complex function

√
· : C \ {−R+} → C is an analytic

extension of the usual square root function
√
· : R+ → R+

We consider simple symmetric random walk on Z. Recall that we denote by Tk the time it takes to reach
level k (see page 59 of the scanned lecture notes). Recall that we denote by Rk the time of the k’th
return to the origin (see page 65). We have found the generating function of T1 in class (page 99).

(a) Find the generating function of Rk. Hint: See page 65 of lecture notes.

(b) Recall from page 65 that Rk/k
2 weakly converges to the Lévy distribution (defined on page 61) as

k → ∞. Use this to show that the characteristic function of the Lévy distribution is exp(−
√
−2it).

Hint:
lim

n→∞
(1− an)

n = e−z if lim
n→∞

n · an = z

Solution:

(a) The generating function of Rk is (G(z))k, where G(z) is the generating function of R1, since Rk is
the sum of k i.i.d. copies of R1. Now R1 has the same distribution as T1 + 1, thus

G(z) = E(zR1) = E(zT1+1) = E(zT1z) = zE(zT1) = z
1−

√
1− z2

z
= 1−

√
1− z2

Thus E(zRk) =
(
1−

√
1− z2

)k
.

(b) E(eitRk) =
(
1−

√
1− e2it

)k

, thus if we define φk(t) = E(eitRk/k
2

) =
(
1−

√
1− e2it/k2

)k

, then we
have to calculate φ(t) = limk→∞ φk(t), and by the second theorem on page 91 of the scanned lecture
notes, φ(t) will be the characteristic function of the Lévy distribution. By the hint, we only need to
show that

lim
k→∞

k ·
√
1− e2it/k2 =

√
− lim

k→∞

e2it/k2 − 1

1/k2
=

√
− d

dx
e2itx

∣∣∣∣
x=0

=
√
−2it.

Thus φ(t) = exp(−
√
−2it).

Remark: It would have been quite painful to calculate
∫∞
0

eitxf(x) dx = exp(−
√
−2it) directly,

where f(x) = 1√
2π

exp
(
− 1

2x

)
x−3/2 is the p.d.f. of the Lévy distribution.
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3. (15 marks) Coupon collector’s problem. Suppose that there is an urn with n different coupons in it. You
start to draw coupons from the urn with replacement. In each round you pick each coupon with equal
probability. Denote by Vn the number of coupons that you need to draw until you can say that you have
touched all of the coupons at least once. The goal of this exercise is to prove the limit theorem

lim
n→∞

P
(
Vn − n ln(n)

n
≤ x

)
= exp

(
−e−x

)
, x ∈ R. (1)

(a) Let ξn,1, ξn,2, . . . , ξn,n denote independent random variables with distribution

P(ξn,k = m) =
k

n

(
n− k

n

)m−1

, m = 1, 2, . . .

Show that Vn has the same distribution as ξn,1 + ξn,2 + · · ·+ ξn,n by giving a probabilistic meaning
to the random variables ξn,1, ξn,2, . . . , ξn,n in the context of coupon collection.
Hint: This is very similar to the lemma proved on page 96-97 of the scanned lecture notes.

(b) Find limn→∞ E
(

Vn−n ln(n)
n

)
and limn→∞ Var

(
Vn−n ln(n)

n

)
.

(c) Show that for any fixed k ∈ N, we have ξn,k/n ⇒ EXP(k) as n → ∞ using the method of characte-
ristic functions.

(d) Show that Vn−E(Vn)
n ⇒ Z, where Z+γ has standard Gumbel distribution and γ is the Euler constant.

Hint: Use the method of characteristic functions and the results proved in class (see page 95-98).
(e) Conclude the proof of the result stated in equation (1).

Solution:

(a) The distribution of ξn,k is optimistic GEO( kn ). When you have already collected ℓ types of coupons
(where ℓ = 0, 1, . . . , n−1) then the number of draws that you have to perform until you touch a new
type of coupon has OPTGEO(n−ℓ

n ) distribution. So let Tn,ℓ denote the number of coupons drawn
until you have already collected ℓ different types of coupons. Thus

Tn,0 = 0, Tn,n = Vn, Tn,ℓ+1 − Tn,ℓ =: ξn,n−ℓ ∼ OPTGEO(
n− ℓ

n
)

and clearly Tn,1 − Tn,0, Tn,2 − Tn,1, . . . , Tn,n − Tn,n−1 are independent.
(b) If X ∼ OPTGEO(p) then E(X) = 1

p and Var(X) = 1−p
p2 = 1

p2 − 1
p .

ξn,k ∼ OPTGEO( kn ), thus E(ξn,k) = n
k , Var(ξn,k) = n2

k2 − n
k .

E(Vn) = n
∑n

k=1
1
k , Var(Vn) = n2

∑n
k=1

1
k2 − n

∑n
k=1

1
k .

limn→∞ E
(

Vn−n ln(n)
n

)
= limn→∞

E(Vn)−n ln(n)
n = limn→∞

∑n
k=1

1
k − log(n) = γ (Euler’s constant).

limn→∞ Var
(

Vn−n ln(n)
n

)
= limn→∞

1
n2Var (Vn) =

∑∞
k=1

1
k2 − limn→∞

1
n

∑n
k=1

1
k =

∑∞
k=1

1
k2 = π2

6 .

(c) E(eitξn,k) =
∑∞

m=1 e
itm k

n

(
n−k
n

)m−1
= eit kn

∑∞
m=1

(
eit n−k

n

)m−1
=

k
n eit

1−n−k
n eit

= keit

n−(n−k)eit .

limn→∞ E(eitξn,k/n) = limn→∞
keit/n

n−(n−k)eit/n
= limn→∞

k
k+n(1−eit/n)

= k
k−it = (1− it

k )
−1. This is the

characteristic function of the EXP(k) distribution.
(d) We have already seen that Z =

∑∞
k=1(Yk − E(Yk)) =

∑∞
k=1(Yk − 1/k), where Yk ∼ EXP(k).

Thus E(eitZ) =
∏∞

k=1(1−
it
k )

−1e−it/k. Let us define ηn,k = (ξn,k − E(ξn,k))/n. We have

lim
n→∞

E
[
exp

(
it
Vn − E(Vn)

n

)]
= lim

n→∞

n∏
k=1

E(eitηn,k)
(∗)
=

∞∏
k=1

lim
n→∞

E(eitηn,k)
(c)
= E(eitZ), t ∈ R

but in order to verify that the equality (∗) indeed holds, one needs to take the logarithm of both
sides and use the dominated convergence theorem. Let’s see the details. By HW6.3(c) we know that

|E(eitηn,k)− 1| = |E(eitηn,k)− 1− itE(ηn,k)| ≤
3

2
t2E(η2n,k) ≤

3

2
t2

1

k2

Note that if |z−1| < 1
2 then there is a constant C such that | ln(z)| ≤ C|z−1|. Thus | ln(E(eitηn,k))| ≤

C ′t2 1
k2 and we obtain limn→∞

∑n
k=1 ln(E[eitηn,k ]) =

∑∞
k=1 limn→∞ ln(E[eitηn,k ]) by dom.conv.thm.

(e) From (b) and (d) we obtain limn→∞ E
[
exp

(
itVn−n ln(n)

n

)]
= E[eit(Z+γ)], but Z + γ has standard

Gumbel distribution (see page 95-98 of the scanned lecture notes), hence (1) holds.
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