
Limit/large dev. thms. HW assignment 5.
1. Let T1 denote the first time when the one dimensional simple symmetric random walk (Xn) reaches level

1 (see page 59 of the scanned lecture notes).

(a) Show that P(T1 > n) = P(Xn = 0) + P(Xn = 1).
Hint: Use the reflection principle (see page 58).

(b) Use the result of an earlier homework to show that limn→∞
P(T1>n)√

2
π

1√
n

= 1.

(c) Show that E(T1) = +∞.

Solution:

(a) First note that if n is an even number then P(Xn = 1) = 0 and P(Xn = 0) > 0, but if n is an odd
number then P(Xn = 0) = 0 and P(Xn = 1) > 0. However, we will consider the even and odd cases
together in our proof.
Recall that {T1 ≤ n} = {Mn ≥ 1}, where Mn = max{X0, X1 . . . Xn}, thus

P(T1 > n) = 1− P(T1 ≤ n) = 1− P(Mn ≥ 1)
(∗)
= 1− (2P(Xn > 1) + P(Xn = 1))

(∗∗)
=

1− P(Xn /∈ {0, 1}) = P(Xn ∈ {0, 1}) = P(Xn = 0) + P(Xn = 1),

where (∗) holds by the reflection principle, i.e., the lemma on the top of page 58 of lecture notes,
and (∗∗) holds because

2P(Xn > 1) + P(Xn = 1)
(♦)
= P(Xn > 1) + P(Xn < −1) + P(Xn = 1) =

P(Xn /∈ {−1, 0})
(♦)
= P(Xn /∈ {0, 1}),

where both equalities marked by (♦) hold because the random walk trajectory has the same law as
its reflection with respect to the horizontal axis (since the increments of the walk have a symmetric
distribution).

(b) First note that if n is an even number then P(Xn = 1) = 0, but if n is an odd number then
P(Xn = 0) = 0. Thus, if n is an even number then by the result of HW4.3, we have

P(Xn = 0) + P(Xn = 1) = P(Xn = 0) ≈ 2√
n

1√
2π
e−0

2/2 =

√
2

π

1√
n
.

If n is an odd number, then similarly we obtain

P(Xn = 0) + P(Xn = 1) = P(Xn = 1) ≈ 2√
n

1√
2π
e−(1/

√
n)2/2 ≈ 2√

n

1√
2π
e−0

2/2 =

√
2

π

1√
n
.

For further details of a similar calculation, see page 71 of the scanned lecture notes.
(c) Here is a well-known formula for the expectation of a non-negative integer-valued random variable:

E(T1) =
∑∞
n=0 P(T1 > n). Let’s prove it. First note that T1 =

∑∞
n=0 1[T1 > n], then we calculate

E(T1) = E

( ∞∑
n=0

1[T1 > n]

)
(∗)
=

∞∑
n=0

E (1[T1 > n]) =

∞∑
n=0

P(T1 > n),

where in (∗) we used the linearity of expectation and the monotone convergence theorem. Now

E(T1) =
∞∑
n=0

P(T1 > n) = +∞

follows by the limit comparison test (see wikipedia): we have

lim
n→∞

P(T1 > n)√
2
π

1√
n

= 1,

∞∑
n=1

√
2

π

1√
n
= +∞.
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2. Let yn,j ∈ R, j = 1, 2, . . . , Nn, n = 1, 2, . . . and assume

lim
n→∞

max
1≤j≤Nn

|yn,j | = 0, sup
n

Nn∑
j=1

|yn,j | <∞, lim
n→∞

Nn∑
j=1

yn,j = y.

Prove

lim
n→∞

Nn∏
j=1

(1 + yn,j) = ey.

Hint: Use the first order Taylor expansion of the logarithm function: if |y| < 1
2 then | ln(1+y)−y| ≤ Cy2.

Solution:

Denote

mn := max
1≤j≤Nn

|yn,j | , an :=

Nn∑
j=1

|yn,j | , sn :=

Nn∑
j=1

yn,j ,

and use the Taylor expansion with error estimate: There exists C < ∞ such that for |y| < 1/2,
|ln(1 + y)− y| < Cy2. Then∣∣∣∣∣∣ln

Nn∏
j=1

(1 + yn,j)− sn

∣∣∣∣∣∣ ≤
Nn∑
j=1

Cy2n,j ≤ C
Nn∑
j=1

mn|yn,j | = Cmnan.

Since mn → 0, supn an < +∞, we have mnan → 0, moreover sn → y, so we get

lim
n→∞

Nn∏
j=1

(1 + yn,j) = ey.

2



3. The classical birthday paradox is the fact that if we choose 23 people randomly, then with probability at
least 1/2 there will be at least two of them who celebrate their birthdays on the same day of the year.
This fact can be viewed as the n = 365 case of the following limit theorem.

Let us fix n ∈ N and letXn,j , j = 1, 2, . . . be i.i.d. random variables uniformly distributed on {1, 2, . . . , n}.
Define

Tn := min{ k : ∃ j < k, Xn,j = Xn,k }.

In plain words: Tn is the index j when the first coincidence of the values is observed. Note that by the
pigeonhole principle, we have P(Tn ≤ n+ 1) = 1.

Prove that Tn/
√
n converges weakly as n→∞ and identify the limiting distribution. More specifically,

prove that for any x ≥ 0,

lim
n→∞

P
(
Tn√
n
> x

)
= e−x

2/2.

Hint: Use the result of exercise 2.

Solution: First note that
P (Tn = j |Tn > j − 1) =

j − 1

n
, (1)

as we now explain. Tn is the time of the first collision, so Tn > j − 1 means that the values of
Xn,1, . . . , Xn,j−1 are all different, so the probability that Xn,j collides with one of Xn,1, . . . , Xn,j−1
is j−1

n , i.e., (1) holds. By iterative conditioning, from (1) we obtain

P (Tn > k) =

k−1∏
j=1

(
1− j

n

)
.

Then

P
(
Tn√
n
> x

)
=

bx
√
nc∏

j=1

(
1− j

n

)
.

Having fixed x ∈ R+, we want to apply exercise 2 with Nn = bx
√
nc and yn,j = −j/n.

lim
n→∞

max
1≤j≤Nn

|yn,j | = lim
n→∞

max
1≤j≤bx

√
nc

j

n
= lim
n→∞

bx
√
nc

n
= 0,

sup
n

Nn∑
j=1

|yn,j | = sup
n

bx
√
nc∑

j=1

j

n

(∗)
< +∞,

lim
n→∞

Nn∑
j=1

yn,j = lim
n→∞

bx
√
nc∑

j=1

−j
n

= lim
n→∞

− (bx
√
nc)(bx

√
nc+ 1)

2n
= −x

2

2
,

where in the equation marked by (∗) we used that a convergent sequence has a finite supremum. We
obtain that for any x ≥ 0,

lim
n→∞

P
(
Tn√
n
> x

)
= e−x

2/2.

This means that Tn/
√
n converges in distribution as n→∞ to a r.v. with c.d.f.

F (x) =

{
1− e−x2/2 if x ≥ 0,

0 if x ≤ 0.

Fun fact: this distribution is called the Rayleigh distribution.
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