Limit/large dev. thms. HW assignment 5.

1. Let T_{1} denote the first time when the one dimensional simple symmetric random walk $\left(X_{n}\right)$ reaches level 1 (see page 59 of the scanned lecture notes).
(a) Show that $\mathbb{P}\left(T_{1}>n\right)=\mathbb{P}\left(X_{n}=0\right)+\mathbb{P}\left(X_{n}=1\right)$.

Hint: Use the reflection principle (see page 58).
(b) Use the result of an earlier homework to show that $\lim _{n \rightarrow \infty} \frac{\mathbb{P}\left(T_{1}>n\right)}{\sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{n}}}=1$.
(c) Show that $\mathbb{E}\left(T_{1}\right)=+\infty$.

Solution:

(a) First note that if n is an even number then $\mathbb{P}\left(X_{n}=1\right)=0$ and $\mathbb{P}\left(X_{n}=0\right)>0$, but if n is an odd number then $\mathbb{P}\left(X_{n}=0\right)=0$ and $\mathbb{P}\left(X_{n}=1\right)>0$. However, we will consider the even and odd cases together in our proof.
Recall that $\left\{T_{1} \leq n\right\}=\left\{M_{n} \geq 1\right\}$, where $M_{n}=\max \left\{X_{0}, X_{1} \ldots X_{n}\right\}$, thus

$$
\begin{aligned}
& \mathbb{P}\left(T_{1}>n\right)=1-\mathbb{P}\left(T_{1} \leq n\right)=1-\mathbb{P}\left(M_{n} \geq 1\right) \stackrel{(*)}{=} 1-\left(2 \mathbb{P}\left(X_{n}>1\right)+\mathbb{P}\left(X_{n}=1\right)\right) \stackrel{(* *)}{=} \\
& 1-\mathbb{P}\left(X_{n} \notin\{0,1\}\right)=\mathbb{P}\left(X_{n} \in\{0,1\}\right)=\mathbb{P}\left(X_{n}=0\right)+\mathbb{P}\left(X_{n}=1\right)
\end{aligned}
$$

where $(*)$ holds by the reflection principle, i.e., the lemma on the top of page 58 of lecture notes, and $(* *)$ holds because

$$
\begin{aligned}
& 2 \mathbb{P}\left(X_{n}>1\right)+\mathbb{P}\left(X_{n}=1\right) \stackrel{(\diamond)}{=} \mathbb{P}\left(X_{n}>1\right)+\mathbb{P}\left(X_{n}<-1\right)+\mathbb{P}\left(X_{n}=1\right)= \\
& \mathbb{P}\left(X_{n} \notin\{-1,0\}\right) \stackrel{(\diamond)}{=} \mathbb{P}\left(X_{n} \notin\{0,1\}\right),
\end{aligned}
$$

where both equalities marked by (\diamond) hold because the random walk trajectory has the same law as its reflection with respect to the horizontal axis (since the increments of the walk have a symmetric distribution).
(b) First note that if n is an even number then $\mathbb{P}\left(X_{n}=1\right)=0$, but if n is an odd number then $\mathbb{P}\left(X_{n}=0\right)=0$. Thus, if n is an even number then by the result of HW4.3, we have

$$
\mathbb{P}\left(X_{n}=0\right)+\mathbb{P}\left(X_{n}=1\right)=\mathbb{P}\left(X_{n}=0\right) \approx \frac{2}{\sqrt{n}} \frac{1}{\sqrt{2 \pi}} e^{-0^{2} / 2}=\sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{n}}
$$

If n is an odd number, then similarly we obtain

$$
\mathbb{P}\left(X_{n}=0\right)+\mathbb{P}\left(X_{n}=1\right)=\mathbb{P}\left(X_{n}=1\right) \approx \frac{2}{\sqrt{n}} \frac{1}{\sqrt{2 \pi}} e^{-(1 / \sqrt{n})^{2} / 2} \approx \frac{2}{\sqrt{n}} \frac{1}{\sqrt{2 \pi}} e^{-0^{2} / 2}=\sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{n}}
$$

For further details of a similar calculation, see page 71 of the scanned lecture notes.
(c) Here is a well-known formula for the expectation of a non-negative integer-valued random variable: $\mathbb{E}\left(T_{1}\right)=\sum_{n=0}^{\infty} \mathbb{P}\left(T_{1}>n\right)$. Let's prove it. First note that $T_{1}=\sum_{n=0}^{\infty} \mathbb{1}\left[T_{1}>n\right]$, then we calculate

$$
\mathbb{E}\left(T_{1}\right)=\mathbb{E}\left(\sum_{n=0}^{\infty} \mathbb{1}\left[T_{1}>n\right]\right) \stackrel{(*)}{=} \sum_{n=0}^{\infty} \mathbb{E}\left(\mathbb{1}\left[T_{1}>n\right]\right)=\sum_{n=0}^{\infty} \mathbb{P}\left(T_{1}>n\right),
$$

where in $(*)$ we used the linearity of expectation and the monotone convergence theorem. Now

$$
\mathbb{E}\left(T_{1}\right)=\sum_{n=0}^{\infty} \mathbb{P}\left(T_{1}>n\right)=+\infty
$$

follows by the limit comparison test (see wikipedia): we have

$$
\lim _{n \rightarrow \infty} \frac{\mathbb{P}\left(T_{1}>n\right)}{\sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{n}}}=1, \quad \sum_{n=1}^{\infty} \sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{n}}=+\infty
$$

2. Let $y_{n, j} \in \mathbb{R}, j=1,2, \ldots, N_{n}, n=1,2, \ldots$ and assume

$$
\lim _{n \rightarrow \infty} \max _{1 \leq j \leq N_{n}}\left|y_{n, j}\right|=0, \quad \sup _{n} \sum_{j=1}^{N_{n}}\left|y_{n, j}\right|<\infty, \quad \lim _{n \rightarrow \infty} \sum_{j=1}^{N_{n}} y_{n, j}=y .
$$

Prove

$$
\lim _{n \rightarrow \infty} \prod_{j=1}^{N_{n}}\left(1+y_{n, j}\right)=e^{y} .
$$

Hint: Use the first order Taylor expansion of the logarithm function: if $|y|<\frac{1}{2}$ then $|\ln (1+y)-y| \leq C y^{2}$.

Solution:

Denote

$$
m_{n}:=\max _{1 \leq j \leq N_{n}}\left|y_{n, j}\right|, \quad a_{n}:=\sum_{j=1}^{N_{n}}\left|y_{n, j}\right|, \quad s_{n}:=\sum_{j=1}^{N_{n}} y_{n, j}
$$

and use the Taylor expansion with error estimate: There exists $C<\infty$ such that for $|y|<1 / 2$, $|\ln (1+y)-y|<C y^{2}$. Then

$$
\left|\ln \prod_{j=1}^{N_{n}}\left(1+y_{n, j}\right)-s_{n}\right| \leq \sum_{j=1}^{N_{n}} C y_{n, j}^{2} \leq C \sum_{j=1}^{N_{n}} m_{n}\left|y_{n, j}\right|=C m_{n} a_{n}
$$

Since $m_{n} \rightarrow 0, \sup _{n} a_{n}<+\infty$, we have $m_{n} a_{n} \rightarrow 0$, moreover $s_{n} \rightarrow y$, so we get

$$
\lim _{n \rightarrow \infty} \prod_{j=1}^{N_{n}}\left(1+y_{n, j}\right)=e^{y}
$$

3. The classical birthday paradox is the fact that if we choose 23 people randomly, then with probability at least $1 / 2$ there will be at least two of them who celebrate their birthdays on the same day of the year. This fact can be viewed as the $n=365$ case of the following limit theorem.
Let us fix $n \in \mathbb{N}$ and let $X_{n, j}, j=1,2, \ldots$ be i.i.d. random variables uniformly distributed on $\{1,2, \ldots, n\}$. Define

$$
T_{n}:=\min \left\{k: \exists j<k, X_{n, j}=X_{n, k}\right\} .
$$

In plain words: T_{n} is the index j when the first coincidence of the values is observed. Note that by the pigeonhole principle, we have $\mathbb{P}\left(T_{n} \leq n+1\right)=1$.
Prove that T_{n} / \sqrt{n} converges weakly as $n \rightarrow \infty$ and identify the limiting distribution. More specifically, prove that for any $x \geq 0$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{T_{n}}{\sqrt{n}}>x\right)=e^{-x^{2} / 2}
$$

Hint: Use the result of exercise 2.
Solution: First note that

$$
\begin{equation*}
\mathbb{P}\left(T_{n}=j \mid T_{n}>j-1\right)=\frac{j-1}{n}, \tag{1}
\end{equation*}
$$

as we now explain. T_{n} is the time of the first collision, so $T_{n}>j-1$ means that the values of $X_{n, 1}, \ldots, X_{n, j-1}$ are all different, so the probability that $X_{n, j}$ collides with one of $X_{n, 1}, \ldots, X_{n, j-1}$ is $\frac{j-1}{n}$, i.e., (1) holds. By iterative conditioning, from (1) we obtain

$$
\mathbb{P}\left(T_{n}>k\right)=\prod_{j=1}^{k-1}\left(1-\frac{j}{n}\right)
$$

Then

$$
\mathbb{P}\left(\frac{T_{n}}{\sqrt{n}}>x\right)=\prod_{j=1}^{\lfloor x \sqrt{n}\rfloor}\left(1-\frac{j}{n}\right)
$$

Having fixed $x \in \mathbb{R}_{+}$, we want to apply exercise 2 with $N_{n}=\lfloor x \sqrt{n}\rfloor$ and $y_{n, j}=-j / n$.

$$
\begin{array}{r}
\lim _{n \rightarrow \infty} \max _{1 \leq j \leq N_{n}}\left|y_{n, j}\right|=\lim _{n \rightarrow \infty} \max _{1 \leq j \leq\lfloor x \sqrt{n}\rfloor} \frac{j}{n}=\lim _{n \rightarrow \infty} \frac{\lfloor x \sqrt{n}\rfloor}{n}=0, \\
\sup _{n} \sum_{j=1}^{N_{n}}\left|y_{n, j}\right|=\sup _{n} \sum_{j=1}^{\lfloor x \sqrt{n}\rfloor} \frac{j}{n} \stackrel{(*)}{<}+\infty, \\
\lim _{n \rightarrow \infty} \sum_{j=1}^{N_{n}} y_{n, j}=\lim _{n \rightarrow \infty} \sum_{j=1}^{\lfloor x \sqrt{n}\rfloor} \frac{-j}{n}=\lim _{n \rightarrow \infty}-\frac{(\lfloor x \sqrt{n}\rfloor)(\lfloor x \sqrt{n}\rfloor+1)}{2 n}=-\frac{x^{2}}{2},
\end{array}
$$

where in the equation marked by $(*)$ we used that a convergent sequence has a finite supremum. We obtain that for any $x \geq 0$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{T_{n}}{\sqrt{n}}>x\right)=e^{-x^{2} / 2}
$$

This means that T_{n} / \sqrt{n} converges in distribution as $n \rightarrow \infty$ to a r.v. with c.d.f.

$$
F(x)= \begin{cases}1-e^{-x^{2} / 2} & \text { if } x \geq 0 \\ 0 & \text { if } x \leq 0\end{cases}
$$

Fun fact: this distribution is called the Rayleigh distribution.

