Limit/large dev. thms. HW assignment 5. Due Wednesday, March 20.

Note: Each of the 3 questions is worth 10 marks. Write your name and Neptun code on each piece of paper that you submit. Separate the solutions of different exercises with a horizontal line. Highlight the final answer. If you submit your homework electronically, pdf format is preferred.

1. Let T_{1} denote the first time when the one dimensional simple symmetric random walk $\left(X_{n}\right)$ reaches level 1 (see page 59 of the scanned lecture notes).
(a) Show that $\mathbb{P}\left(T_{1}>n\right)=\mathbb{P}\left(X_{n}=0\right)+\mathbb{P}\left(X_{n}=1\right)$.

Hint: Use the reflection principle (see page 58).
(b) Use the result of an earlier homework to show that

$$
\lim _{n \rightarrow \infty} \frac{\mathbb{P}\left(T_{1}>n\right)}{\sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{n}}}=1
$$

(c) Show that $\mathbb{E}\left(T_{1}\right)=+\infty$.
2. Let $y_{n, j} \in \mathbb{R}, j=1,2, \ldots, N_{n}, n=1,2, \ldots$ and assume

$$
\lim _{n \rightarrow \infty} \max _{1 \leq j \leq N_{n}}\left|y_{n, j}\right|=0, \quad \sup _{n} \sum_{j=1}^{N_{n}}\left|y_{n, j}\right|<\infty, \quad \lim _{n \rightarrow \infty} \sum_{j=1}^{N_{n}} y_{n, j}=y
$$

Prove

$$
\lim _{n \rightarrow \infty} \prod_{j=1}^{N_{n}}\left(1+y_{n, j}\right)=e^{y} .
$$

Hint: Use the first order Taylor expansion of the logarithm function: if $|y|<\frac{1}{2}$ then $|\ln (1+y)-y| \leq C y^{2}$.
3. The classical birthday paradox is the fact that if we choose 23 people randomly, then with probability at least $1 / 2$ there will be at least two of them who celebrate their birthdays on the same day of the year. This fact can be viewed as the $n=365$ case of the following limit theorem.
Let us fix $n \in \mathbb{N}$ and let $X_{n, j}, j=1,2, \ldots$ be i.i.d. random variables uniformly distributed on $\{1,2, \ldots, n\}$. Define

$$
T_{n}:=\min \left\{k: \exists j<k, X_{n, j}=X_{n, k}\right\} .
$$

In plain words: T_{n} is the index j when the first coincidence of the values is observed. Note that by the pigeonhole principle, we have $\mathbb{P}\left(T_{n} \leq n+1\right)=1$.
Prove that T_{n} / \sqrt{n} converges weakly as $n \rightarrow \infty$ and identify the limiting distribution. More specifically, prove that for any $x \geq 0$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{T_{n}}{\sqrt{n}}>x\right)=e^{-x^{2} / 2}
$$

Hint: Use the result of exercise 2.

