
Limit/large dev. thms. HW assignment 4.
1. The Fréchet distribution.

(a) Let U1, U2, . . . denote i.i.d. random variables with UNI[0, 1] distribution. Let β > 0. Let

Mn = max{U−β1 , . . . , U−βn }.

Show that Mn/n
β converges in distribution as n → ∞ by determining the cumulative distribution

function (c.d.f.) F (x) of the limiting distribution.

(b) Show that if Y1 and Y2 are i.i.d. with the above c.d.f. F (x) then (Y1 ∨ Y2)/2β also has c.d.f. F (x).
Instruction: Use the explicit formula for F that you have obtained in sub-exercise (a), similarly to
the top of page 44 of the scanned lecture notes.

(c) Show that if Y1 and Y2 are i.i.d. with the above c.d.f. F (x) then (Y1 ∨ Y2)/2β also has c.d.f. F (x).
Instruction: Do not use the explicit form of F , but use the limit theorem (i.e., Mn/n

β =⇒ Y1)
that you have obtained in sub-exercise (a), similarly to the middle of page 44 of scanned.

Solution:

(a) First note that for any x ≥ 1 we have P(U−βi ≤ x) = P(Ui ≥ x−1/β) = 1−x−1/β , thus for any x > 0
and for any n big enough so that xnβ ≥ 1 we have

P(Mn/n
β ≤ x) = P(Mn ≤ xnβ) = P(U−β1 ≤ xnβ , . . . , U−βn ≤ xnβ) =

P(U−β1 ≤ xnβ) . . .P(U−βn ≤ xnβ) = (1− (xnβ)−1/β)n =

(
1− x−1/β

n

)n
Therefore limn→∞ P(Mn/n

β ≤ x) = e−x
−1/β

for any x ≥ 0.
If we define Fn(x) = P(Mn/n

β ≤ x) then Fn ⇒ F , where

F (x) =

{
e−x

−1/β

if x > 0,

0 if x ≤ 0.

Remark: The probability distribution corresponding to the c.d.f. F is known as the Fréchet distri-
bution in extreme value theory (c.f. page 43 of the scanned lecture notes).

(b)
P
(
(Y1 ∨ Y2)/2β ≤ x

)
= P

(
Y1 ∨ Y2 ≤ 2βx

)
= P(Y1 ≤ 2βx)P(Y2 ≤ 2βx) = F 2(2βx)

Thus we want to show that F 2(2βx) = F (x). This is clear if x ≤ 0, since both sides are zero. On
the other hand, if x > 0 then

F 2(2βx) = (e−(2
βx)−1/β

)2 = (e−
1
2x
−1/β

)2 = e−x
−1/β

= F (x)

(c) Let M∗n = max{U−βn+1, . . . , U
−β
2n }. Then Mn and M∗n are i.i.d., moreover Mn/n

β =⇒ Y1 and
M∗n/n

β =⇒ Y2, where Y1 and Y2 are i.i.d. with c.d.f. F by sub-exercise (a). Also, we have
M2n/(2n)β =⇒ Y3, where Y3 has c.d.f. F , again by (a). But on the other hand hand

M2n

(2n)β
=
Mn ∨M∗n

(2n)β
=

1

2β

(
Mn

nβ
∨ M

∗
n

nβ

)
=⇒ Y1 ∨ Y2

2β

Thus Y3 ∼ (Y1 ∨ Y2)/2β , thus (Y1 ∨ Y2)/2β also has c.d.f. F (x).
Remark: Essentially what we have shown here was that the Fréchet distribution is max-stable.
The Gumbel distribution is also max-stable, see page 44 of the scanned lecture notes.
For the precise definition of max-stability, see the lecture notes of the Extreme value theory course
BMETE95MM16 or wikipedia.
More about stable distributions later.
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2. The goal of this exercise is to deduce the central limit theorem (CLT) for Poisson distribution using the
CLT for the sum of i.i.d. EXP (1) random variables (proved in class on March 6).

(a) Let Fn : R → [0, 1] and F : R → [0, 1] denote c.d.f.’s. Assume that F is continuous and Fn ⇒ F .
Prove that for any convergent sequence xn → x of real numbers we have Fn(xn)→ F (x).
Hint: Use Slutsky.

(b) Let X1, X2, . . . denote i.i.d. random variables with EXP(1) distribution. We can think of Xi as the
waiting time between the arrivals of consecutive earthquakes. Denote by Tn = X1 + · · · + Xn the
time of the n’th earthquake. We have already determined the p.d.f. of Tn in HW3.3(a). Deduce
from this that the c.d.f. of Tn is

Fn(t) = P(Tn ≤ t) = 1−
n−1∑
k=0

e−t
tk

k!
(1)

(c) Denote by Nt the number of earthquakes during the time interval [0, t]. Show that the identity
{Tn ≤ t} = {Nt ≥ n} holds and deduce from sub-exercise (b) that Nt has POI(t) distribution.

(d) Use the fact that Tn−n√
n
⇒ N (0, 1) as n→∞ to deduce that Nt−t√

t
⇒ N (0, 1) as t→∞.

Hint: You will have to use {Tn ≤ t} = {Nt ≥ n} as well as the result of sub-exercise (a).

Solution:

(a) Let Xn denote a random variable with c.d.f. Fn. Let X denote a random variable with c.d.f. F .
Then Xn =⇒ X as n → ∞. Let an := xn − x, thus x + an = x. Thus an → 0 as n → ∞. Let
Yn := Xn − an. We have Yn =⇒ X by Slutsky. Let Gn denote the c.d.f. of Yn. Thus we have
Gn =⇒ F . Since F is continuous, we have Gn(x)→ F (x). But

Gn(x) = P(Yn ≤ x) = P(Xn − an ≤ x) = P(Xn ≤ x+ an) = P(Xn ≤ xn) = Fn(xn),

thus Fn(xn)→ F (x).

(b) The p.d.f. of Tn is fn(t) = e−t tn−1

(n−1)! if t ≥ 0. In order to prove that Fn defined in (1) is indeed

satisfies Fn(t) =
∫ t
0
fn(s) ds, we only need to check that Fn(0) = 0 and F ′n(t) = fn(t) if t ≥ 0, n ≥ 1.

Indeed, we have Fn(0) = 0 and

F ′n(t) = −
n−1∑
k=0

d

dt

(
e−t

tk

k!

)
=

n−1∑
k=0

e−t
tk

k!
−
n−2∑
k=0

e−t
tk

k!
= fn(t)

(c) The events {Tn ≤ t} and {Nt ≥ n} both mean that the n’th earthquake happened by time t.

P(Nt = n) = P(Nt ≥ n)−P(Nt ≥ n+1) = P(Tn ≤ t)−P(Tn+1 ≤ t)
(1)
= e−t

tn

n!
, hence Nt ∼ POI(t).

(d) Let us fix some x ∈ R. We want to show that limt→∞ P
(
Nt−t√

t
≤ x

)
= Φ(x).

This is equivalent to showing that limt→∞ P
(
Nt−t√

t
≥ x

)
= 1− Φ(x).{

Nt − t√
t
≥ x

}
=
{
Nt ≥ t+

√
tx
}

=
{
Nt ≥ dt+

√
txe
}

=
{
Tdt+

√
txe ≤ t

}
=Tdt+√txe − dt+

√
txe√

dt+
√
txe

≤ t− dt+
√
txe√

dt+
√
txe

 (2)

Now observe that Tn−n√
n
⇒ N (0, 1) as n→∞ implies that

Tdt+
√
txe−dt+

√
txe√

dt+
√
txe

⇒ N (0, 1) as t→∞.

Also note that limt→∞
t−dt+

√
txe√

dt+
√
txe

= −x, therefore

lim
t→∞

P
(
Nt − t√

t
≥ x

)
(2)
= lim

t→∞
P

Tdt+√txe − dt+
√
txe√

dt+
√
txe

≤ t− dt+
√
txe√

dt+
√
txe

 (a)
= Φ(−x) = 1− Φ(x).
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3. Local central limit theorem for BIN(n, 12 )

LetX1, X2, . . . denote i.i.d. random variables, where P(Xi = 1) = P(Xi = 0) = 1
2 . Let Sn = X1+· · ·+Xn,

thus Sn ∼ BIN(n, 12 ). In this exercise we write an ≈ bn to denote that limn→∞ an/bn = 1.

(a) Use Stirling’s formula to show that if (k(n)) is an integer-valued sequence satisfying k(n)→∞ and
n− k(n)→∞ then

√
n

2
P (Sn = k(n)) ≈ 1√

2π

1

(2k(n)/n)k(n)+
1
2 · (2− 2k(n)/n)(n−k(n))+

1
2

. (3)

(b) Show that if k(n) = n
2 +

√
n
2 z(n), where (z(n)) is a bounded real-valued sequence, then

(2k(n)/n)k(n)+
1
2 · (2− 2k(n)/n)(n−k(n))+

1
2 ≈ ez(n)

2/2. (4)

(c) Prove the local CLT for Sn, i.e., show that for any x ∈ R we have

lim
n→∞

√
n

2
P
(
Sn =

⌊
n

2
+

√
n

2
x

⌋)
=

1√
2π
e−x

2/2. (5)

Hint: There is a sequence z(n) such that k(n) =
⌊
n
2 +

√
n
2 x
⌋

= n
2 +

√
n
2 z(n) for all n.

Solution: The theorem (5) was first proved by Abraham de Moivre in 1718.

(a) Note that k(n)→∞ and (n− k(n))→∞ as n→∞, so we can apply Stirling’s formula to k(n)! as
well as (n− k(n))! in the calculation below:

√
n

2
P (Sn = k(n)) =

√
n

2

n!

k(n)!(n− k(n))!
2−n ≈

√
n

2

√
2πnn+

1
2 e−n√

2πk(n)k(n)+
1
2 e−k(n) ·

√
2π(n− k(n))(n−k(n))+

1
2 e−(n−k(n))

2−n =

1√
2π

√
n

2

nn+
1
2

kk(n)+
1
2 · (n− k(n))(n−k(n))+

1
2

2−n =
1√
2π

(n/2)n+1

k(n)k(n)+
1
2 · (n− k(n))(n−k(n))+

1
2

=

1√
2π

1

(2k(n)/n)k(n)+
1
2 · (2− 2k(n)/n)(n−k(n))+

1
2

.

(b) We will use that if an → 0 and bn →∞, moreover (anbn) is bounded, then (1 + an)
bn ≈ eanbn .

(2k(n)/n)k(n)+
1
2 · (2− 2k(n)/n)(n−k(n))+

1
2 =

(
1 +

z(n)√
n

)k(n)+ 1
2

·
(

1− z(n)√
n

)(n−k(n))+ 1
2

≈

(
1 +

z(n)√
n

)k(n)
·
(

1− z(n)√
n

)(n−k(n))

=

(
1 +

z(n)√
n

)n
2 +
√
n
2 z

·
(

1− z(n)√
n

)n
2−
√
n
2 z(n)

=

(
1− z(n)2

n

)n
2

·
(

1 +
z(n)√
n

)√n
2 z(n)

·
(

1− z(n)√
n

)−√n2 z(n)

≈ e−z(n)
2/2 ·ez(n)

2/2 ·ez(n)
2/2 = ez(n)

2/2.

(c) There is a sequence z(n) such that k(n) =
⌊
n
2 +

√
n
2 x
⌋

= n
2 +

√
n
2 z(n) for all n. We have k(n)→∞

and (n−k(n))→∞, so (a) can be applied. Also, clearly, we have |x− z(n)| ≤ 2√
n
, thus e−z(n)

2/2 ≈
e−x

2/2 as n → ∞. The sequence z(n) converges, so it is bounded, therefore (b) can be applied.
Thus we have

√
n

2
P
(
Sn =

⌊
n

2
+

√
n

2
x

⌋)
(a),(b)
≈ 1√

2π
e−z(n)

2/2 ≈ 1√
2π
e−x

2/2, n→∞. (6)

This completes the proof of (5).
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