Limit/large dev. thms. HW assignment 4.

1. The Fréchet distribution.
(a) Let U_{1}, U_{2}, \ldots denote i.i.d. random variables with $\operatorname{UNI}[0,1]$ distribution. Let $\beta>0$. Let

$$
M_{n}=\max \left\{U_{1}^{-\beta}, \ldots, U_{n}^{-\beta}\right\}
$$

Show that M_{n} / n^{β} converges in distribution as $n \rightarrow \infty$ by determining the cumulative distribution function (c.d.f.) $F(x)$ of the limiting distribution.
(b) Show that if Y_{1} and Y_{2} are i.i.d. with the above c.d.f. $F(x)$ then $\left(Y_{1} \vee Y_{2}\right) / 2^{\beta}$ also has c.d.f. $F(x)$. Instruction: Use the explicit formula for F that you have obtained in sub-exercise (a), similarly to the top of page 44 of the scanned lecture notes.
(c) Show that if Y_{1} and Y_{2} are i.i.d. with the above c.d.f. $F(x)$ then $\left(Y_{1} \vee Y_{2}\right) / 2^{\beta}$ also has c.d.f. $F(x)$. Instruction: Do not use the explicit form of F, but use the limit theorem (i.e., $M_{n} / n^{\beta} \Longrightarrow Y_{1}$) that you have obtained in sub-exercise (a), similarly to the middle of page 44 of scanned.

Solution:

(a) First note that for any $x \geq 1$ we have $\mathbb{P}\left(U_{i}^{-\beta} \leq x\right)=\mathbb{P}\left(U_{i} \geq x^{-1 / \beta}\right)=1-x^{-1 / \beta}$, thus for any $x>0$ and for any n big enough so that $x n^{\beta} \geq 1$ we have

$$
\begin{aligned}
\mathbb{P}\left(M_{n} / n^{\beta} \leq x\right)=\mathbb{P}\left(M_{n} \leq x n^{\beta}\right)=\mathbb{P}\left(U_{1}^{-\beta} \leq x n^{\beta}, \ldots, U_{n}^{-\beta} \leq x n^{\beta}\right)= \\
\mathbb{P}\left(U_{1}^{-\beta} \leq x n^{\beta}\right) \ldots \mathbb{P}\left(U_{n}^{-\beta} \leq x n^{\beta}\right)=\left(1-\left(x n^{\beta}\right)^{-1 / \beta}\right)^{n}=\left(1-\frac{x^{-1 / \beta}}{n}\right)^{n}
\end{aligned}
$$

Therefore $\lim _{n \rightarrow \infty} \mathbb{P}\left(M_{n} / n^{\beta} \leq x\right)=e^{-x^{-1 / \beta}}$ for any $x \geq 0$.
If we define $F_{n}(x)=\mathbb{P}\left(M_{n} / n^{\beta} \leq x\right)$ then $F_{n} \Rightarrow F$, where

$$
F(x)=\left\{\begin{array}{lll}
e^{-x^{-1 / \beta}} & \text { if } & x>0 \\
0 & \text { if } & x \leq 0
\end{array}\right.
$$

Remark: The probability distribution corresponding to the c.d.f. F is known as the Fréchet distribution in extreme value theory (c.f. page 43 of the scanned lecture notes).
(b)

$$
\mathbb{P}\left(\left(Y_{1} \vee Y_{2}\right) / 2^{\beta} \leq x\right)=\mathbb{P}\left(Y_{1} \vee Y_{2} \leq 2^{\beta} x\right)=\mathbb{P}\left(Y_{1} \leq 2^{\beta} x\right) \mathbb{P}\left(Y_{2} \leq 2^{\beta} x\right)=F^{2}\left(2^{\beta} x\right)
$$

Thus we want to show that $F^{2}\left(2^{\beta} x\right)=F(x)$. This is clear if $x \leq 0$, since both sides are zero. On the other hand, if $x>0$ then

$$
F^{2}\left(2^{\beta} x\right)=\left(e^{-\left(2^{\beta} x\right)^{-1 / \beta}}\right)^{2}=\left(e^{-\frac{1}{2} x^{-1 / \beta}}\right)^{2}=e^{-x^{-1 / \beta}}=F(x)
$$

(c) Let $M_{n}^{*}=\max \left\{U_{n+1}^{-\beta}, \ldots, U_{2 n}^{-\beta}\right\}$. Then M_{n} and M_{n}^{*} are i.i.d., moreover $M_{n} / n^{\beta} \Longrightarrow \quad Y_{1}$ and $M_{n}^{*} / n^{\beta} \Longrightarrow Y_{2}$, where Y_{1} and Y_{2} are i.i.d. with c.d.f. F by sub-exercise (a). Also, we have $M_{2 n} /(2 n)^{\beta} \Longrightarrow Y_{3}$, where Y_{3} has c.d.f. F, again by (a). But on the other hand hand

$$
\frac{M_{2 n}}{(2 n)^{\beta}}=\frac{M_{n} \vee M_{n}^{*}}{(2 n)^{\beta}}=\frac{1}{2^{\beta}}\left(\frac{M_{n}}{n^{\beta}} \vee \frac{M_{n}^{*}}{n^{\beta}}\right) \Longrightarrow \frac{Y_{1} \vee Y_{2}}{2^{\beta}}
$$

Thus $Y_{3} \sim\left(Y_{1} \vee Y_{2}\right) / 2^{\beta}$, thus $\left(Y_{1} \vee Y_{2}\right) / 2^{\beta}$ also has c.d.f. $F(x)$.
Remark: Essentially what we have shown here was that the Fréchet distribution is max-stable. The Gumbel distribution is also max-stable, see page 44 of the scanned lecture notes.
For the precise definition of max-stability, see the lecture notes of the Extreme value theory course BMETE95MM16 or wikipedia.
More about stable distributions later.
2. The goal of this exercise is to deduce the central limit theorem (CLT) for Poisson distribution using the CLT for the sum of i.i.d. $E X P(1)$ random variables (proved in class on March 6).
(a) Let $F_{n}: \mathbb{R} \rightarrow[0,1]$ and $F: \mathbb{R} \rightarrow[0,1]$ denote c.d.f.'s. Assume that F is continuous and $F_{n} \Rightarrow F$. Prove that for any convergent sequence $x_{n} \rightarrow x$ of real numbers we have $F_{n}\left(x_{n}\right) \rightarrow F(x)$.
Hint: Use Slutsky.
(b) Let X_{1}, X_{2}, \ldots denote i.i.d. random variables with $\operatorname{EXP}(1)$ distribution. We can think of X_{i} as the waiting time between the arrivals of consecutive earthquakes. Denote by $T_{n}=X_{1}+\cdots+X_{n}$ the time of the n 'th earthquake. We have already determined the p.d.f. of T_{n} in HW3.3(a). Deduce from this that the c.d.f. of T_{n} is

$$
\begin{equation*}
F_{n}(t)=\mathbb{P}\left(T_{n} \leq t\right)=1-\sum_{k=0}^{n-1} e^{-t} \frac{t^{k}}{k!} \tag{1}
\end{equation*}
$$

(c) Denote by N_{t} the number of earthquakes during the time interval $[0, t]$. Show that the identity $\left\{T_{n} \leq t\right\}=\left\{N_{t} \geq n\right\}$ holds and deduce from sub-exercise (b) that N_{t} has $\operatorname{POI}(t)$ distribution.
(d) Use the fact that $\frac{T_{n}-n}{\sqrt{n}} \Rightarrow \mathcal{N}(0,1)$ as $n \rightarrow \infty$ to deduce that $\frac{N_{t}-t}{\sqrt{t}} \Rightarrow \mathcal{N}(0,1)$ as $t \rightarrow \infty$. Hint: You will have to use $\left\{T_{n} \leq t\right\}=\left\{N_{t} \geq n\right\}$ as well as the result of sub-exercise (a).

Solution:

(a) Let X_{n} denote a random variable with c.d.f. F_{n}. Let X denote a random variable with c.d.f. F. Then $X_{n} \Longrightarrow X$ as $n \rightarrow \infty$. Let $a_{n}:=x_{n}-x$, thus $x+a_{n}=x$. Thus $a_{n} \rightarrow 0$ as $n \rightarrow \infty$. Let $Y_{n}:=X_{n}-a_{n}$. We have $Y_{n} \Longrightarrow X$ by Slutsky. Let G_{n} denote the c.d.f. of Y_{n}. Thus we have $G_{n} \Longrightarrow F$. Since F is continuous, we have $G_{n}(x) \rightarrow F(x)$. But

$$
G_{n}(x)=\mathbb{P}\left(Y_{n} \leq x\right)=\mathbb{P}\left(X_{n}-a_{n} \leq x\right)=\mathbb{P}\left(X_{n} \leq x+a_{n}\right)=\mathbb{P}\left(X_{n} \leq x_{n}\right)=F_{n}\left(x_{n}\right)
$$

thus $F_{n}\left(x_{n}\right) \rightarrow F(x)$.
(b) The p.d.f. of T_{n} is $f_{n}(t)=e^{-t} \frac{t^{n-1}}{(n-1)!}$ if $t \geq 0$. In order to prove that F_{n} defined in (1) is indeed satisfies $F_{n}(t)=\int_{0}^{t} f_{n}(s) \mathrm{d} s$, we only need to check that $F_{n}(0)=0$ and $F_{n}^{\prime}(t)=f_{n}(t)$ if $t \geq 0, n \geq 1$. Indeed, we have $F_{n}(0)=0$ and

$$
F_{n}^{\prime}(t)=-\sum_{k=0}^{n-1} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(e^{-t} \frac{t^{k}}{k!}\right)=\sum_{k=0}^{n-1} e^{-t} \frac{t^{k}}{k!}-\sum_{k=0}^{n-2} e^{-t} \frac{t^{k}}{k!}=f_{n}(t)
$$

(c) The events $\left\{T_{n} \leq t\right\}$ and $\left\{N_{t} \geq n\right\}$ both mean that the n 'th earthquake happened by time t. $\mathbb{P}\left(N_{t}=n\right)=\mathbb{P}\left(N_{t} \geq n\right)-\mathbb{P}\left(N_{t} \geq n+1\right)=\mathbb{P}\left(T_{n} \leq t\right)-\mathbb{P}\left(T_{n+1} \leq t\right) \stackrel{(1)}{=} e^{-t} \frac{t^{n}}{n!}, \quad$ hence $N_{t} \sim \operatorname{POI}(t)$.
(d) Let us fix some $x \in \mathbb{R}$. We want to show that $\lim _{t \rightarrow \infty} \mathbb{P}\left(\frac{N_{t}-t}{\sqrt{t}} \leq x\right)=\Phi(x)$.

This is equivalent to showing that $\lim _{t \rightarrow \infty} \mathbb{P}\left(\frac{N_{t}-t}{\sqrt{t}} \geq x\right)=1-\Phi(x)$.

$$
\begin{align*}
& \left\{\frac{N_{t}-t}{\sqrt{t}} \geq x\right\}=\left\{N_{t} \geq t+\sqrt{t} x\right\}=\left\{N_{t} \geq\lceil t+\sqrt{t} x\rceil\right\}=\left\{T_{\lceil t+\sqrt{t} x\rceil} \leq t\right\}= \\
& \qquad\left\{\frac{T_{\lceil t+\sqrt{t} x\rceil}-\lceil t+\sqrt{t} x\rceil}{\sqrt{\lceil t+\sqrt{t} x\rceil}} \leq \frac{t-\lceil t+\sqrt{t} x\rceil}{\sqrt{\lceil t+\sqrt{t} x\rceil}}\right\} \tag{2}
\end{align*}
$$

Now observe that $\frac{T_{n}-n}{\sqrt{n}} \Rightarrow \mathcal{N}(0,1)$ as $n \rightarrow \infty$ implies that $\frac{T_{\lceil t+\sqrt{t x\rceil}}-\lceil t+\sqrt{t} x\rceil}{\sqrt{\lceil t+\sqrt{t} x\rceil}} \Rightarrow \mathcal{N}(0,1)$ as $t \rightarrow \infty$.
Also note that $\lim _{t \rightarrow \infty} \frac{t-\lceil t+\sqrt{t} x\rceil}{\sqrt{\lceil t+\sqrt{t} x\rceil}}=-x$, therefore

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left(\frac{N_{t}-t}{\sqrt{t}} \geq x\right) \stackrel{(2)}{=} \lim _{t \rightarrow \infty} \mathbb{P}\left(\frac{T_{\lceil t+\sqrt{t} x\rceil}-\lceil t+\sqrt{t} x\rceil}{\sqrt{\lceil t+\sqrt{t} x\rceil}} \leq \frac{t-\lceil t+\sqrt{t} x\rceil}{\sqrt{\lceil t+\sqrt{t} x\rceil}}\right) \stackrel{(a)}{=} \Phi(-x)=1-\Phi(x)
$$

3. Local central limit theorem for $\operatorname{BIN}\left(n, \frac{1}{2}\right)$

Let X_{1}, X_{2}, \ldots denote i.i.d. random variables, where $\mathbb{P}\left(X_{i}=1\right)=\mathbb{P}\left(X_{i}=0\right)=\frac{1}{2}$. Let $S_{n}=X_{1}+\cdots+X_{n}$, thus $S_{n} \sim \operatorname{BIN}\left(n, \frac{1}{2}\right)$. In this exercise we write $a_{n} \approx b_{n}$ to denote that $\lim _{n \rightarrow \infty} a_{n} / b_{n}=1$.
(a) Use Stirling's formula to show that if $(k(n))$ is an integer-valued sequence satisfying $k(n) \rightarrow \infty$ and $n-k(n) \rightarrow \infty$ then

$$
\begin{equation*}
\frac{\sqrt{n}}{2} \mathbb{P}\left(S_{n}=k(n)\right) \approx \frac{1}{\sqrt{2 \pi}} \frac{1}{(2 k(n) / n)^{k(n)+\frac{1}{2}} \cdot(2-2 k(n) / n)^{(n-k(n))+\frac{1}{2}}} . \tag{3}
\end{equation*}
$$

(b) Show that if $k(n)=\frac{n}{2}+\frac{\sqrt{n}}{2} z(n)$, where $(z(n))$ is a bounded real-valued sequence, then

$$
\begin{equation*}
(2 k(n) / n)^{k(n)+\frac{1}{2}} \cdot(2-2 k(n) / n)^{(n-k(n))+\frac{1}{2}} \approx e^{z(n)^{2} / 2} \tag{4}
\end{equation*}
$$

(c) Prove the local CLT for S_{n}, i.e., show that for any $x \in \mathbb{R}$ we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{2} \mathbb{P}\left(S_{n}=\left\lfloor\frac{n}{2}+\frac{\sqrt{n}}{2} x\right\rfloor\right)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \tag{5}
\end{equation*}
$$

Hint: There is a sequence $z(n)$ such that $k(n)=\left\lfloor\frac{n}{2}+\frac{\sqrt{n}}{2} x\right\rfloor=\frac{n}{2}+\frac{\sqrt{n}}{2} z(n)$ for all n.
Solution: The theorem (5) was first proved by Abraham de Moivre in 1718.
(a) Note that $k(n) \rightarrow \infty$ and $(n-k(n)) \rightarrow \infty$ as $n \rightarrow \infty$, so we can apply Stirling's formula to $k(n)$! as well as $(n-k(n))$! in the calculation below:

$$
\begin{array}{r}
\frac{\sqrt{n}}{2} \mathbb{P}\left(S_{n}=k(n)\right)=\frac{\sqrt{n}}{2} \frac{n!}{k(n)!(n-k(n))!} 2^{-n} \approx \\
\frac{\sqrt{n}}{2} \frac{\sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n}}{\sqrt{2 \pi} k(n)^{k(n)+\frac{1}{2}} e^{-k(n)} \cdot \sqrt{2 \pi}(n-k(n))^{(n-k(n))+\frac{1}{2}} e^{-(n-k(n))}} 2^{-n}= \\
\frac{1}{\sqrt{2 \pi}} \frac{\sqrt{n}}{2} \frac{n^{n+\frac{1}{2}}}{k^{k(n)+\frac{1}{2}} \cdot(n-k(n))^{(n-k(n))+\frac{1}{2}}} 2^{-n}=\frac{1}{\sqrt{2 \pi}} \frac{(n / 2)^{n+1}}{k(n)^{k(n)+\frac{1}{2}} \cdot(n-k(n))^{(n-k(n))+\frac{1}{2}}}= \\
\frac{1}{\sqrt{2 \pi}} \frac{1}{(2 k(n) / n)^{k(n)+\frac{1}{2}} \cdot(2-2 k(n) / n)^{(n-k(n))+\frac{1}{2}}} .
\end{array}
$$

(b) We will use that if $a_{n} \rightarrow 0$ and $b_{n} \rightarrow \infty$, moreover $\left(a_{n} b_{n}\right)$ is bounded, then $\left(1+a_{n}\right)^{b_{n}} \approx e^{a_{n} b_{n}}$.

$$
\begin{gathered}
(2 k(n) / n)^{k(n)+\frac{1}{2}} \cdot(2-2 k(n) / n)^{(n-k(n))+\frac{1}{2}}=\left(1+\frac{z(n)}{\sqrt{n}}\right)^{k(n)+\frac{1}{2}} \cdot\left(1-\frac{z(n)}{\sqrt{n}}\right)^{(n-k(n))+\frac{1}{2}} \approx \\
\left(1+\frac{z(n)}{\sqrt{n}}\right)^{k(n)} \cdot\left(1-\frac{z(n)}{\sqrt{n}}\right)^{(n-k(n))}=\left(1+\frac{z(n)}{\sqrt{n}}\right)^{\frac{n}{2}+\frac{\sqrt{n}}{2} z} \cdot\left(1-\frac{z(n)}{\sqrt{n}}\right)^{\frac{n}{2}-\frac{\sqrt{n}}{2} z(n)}= \\
\left(1-\frac{z(n)^{2}}{n}\right)^{\frac{n}{2}} \cdot\left(1+\frac{z(n)}{\sqrt{n}}\right)^{\frac{\sqrt{n}}{2} z(n)} \cdot\left(1-\frac{z(n)}{\sqrt{n}}\right)^{-\frac{\sqrt{n}}{2} z(n)} \approx e^{-z(n)^{2} / 2} \cdot e^{z(n)^{2} / 2} \cdot e^{z(n)^{2} / 2}=e^{z(n)^{2} / 2} .
\end{gathered}
$$

(c) There is a sequence $z(n)$ such that $k(n)=\left\lfloor\frac{n}{2}+\frac{\sqrt{n}}{2} x\right\rfloor=\frac{n}{2}+\frac{\sqrt{n}}{2} z(n)$ for all n. We have $k(n) \rightarrow \infty$ and $(n-k(n)) \rightarrow \infty$, so (a) can be applied. Also, clearly, we have $|x-z(n)| \leq \frac{2}{\sqrt{n}}$, thus $e^{-z(n)^{2} / 2} \approx$ $e^{-x^{2} / 2}$ as $n \rightarrow \infty$. The sequence $z(n)$ converges, so it is bounded, therefore (b) can be applied. Thus we have

$$
\begin{equation*}
\frac{\sqrt{n}}{2} \mathbb{P}\left(S_{n}=\left\lfloor\frac{n}{2}+\frac{\sqrt{n}}{2} x\right\rfloor\right) \stackrel{(a),(b)}{\approx}_{\sqrt{2 \pi}}^{\sqrt{2 \pi}} e^{-z(n)^{2} / 2} \approx \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}, \quad n \rightarrow \infty \tag{6}
\end{equation*}
$$

This completes the proof of (5).

