Limit/large dev. thms. HW assignment 3. Solutions

1. (a) Let I denote the Legendre transform of the logarithmic moment generating function of X. Let $Y:=X_{1}+X_{2}$, where X_{1} and X_{2} are i.i.d. copies of X. Find the Legendre transform of the logarithmic moment generating function of Y.
(b) Let I denote the Legendre transform of the logarithmic moment generating function of X. Let $Y:=a X+b$ (where $a, b \in \mathbb{R}$). Find the Legendre transform of the log. mom. gen. function of Y.
(c) Let Y_{1}, Y_{2}, \ldots denote i.i.d. integer-valued random variables with distribution

$$
\begin{equation*}
\mathbb{P}\left(Y_{i}=-2 k\right)=2^{-(k+1)}, \quad k=0,1,2, \ldots \tag{1}
\end{equation*}
$$

Find $\lim _{n \rightarrow \infty} \frac{1}{n} \ln \left(\mathbb{P}\left(Y_{1}+\cdots+Y_{n} \leq n x\right)\right)$ for any $x \in \mathbb{R}$.
(d) Let Y_{1}, Y_{2}, \ldots denote i.i.d. integer-valued random variables with distribution

$$
\begin{equation*}
\mathbb{P}\left(Y_{i}=-1\right)=1 / 4, \quad \mathbb{P}\left(Y_{i}=0\right)=1 / 2, \quad \mathbb{P}\left(Y_{i}=1\right)=1 / 4 \tag{2}
\end{equation*}
$$

Find $\lim _{n \rightarrow \infty} \frac{1}{n} \ln \left(\mathbb{P}\left(Y_{1}+\cdots+Y_{n} \leq n x\right)\right)$ for any $x \in \mathbb{R}$.

Solution:

(a) Let $\widehat{I}_{X}(\lambda):=\ln \left(\mathbb{E}\left[e^{\lambda X}\right]\right)$ and $\widehat{I}_{Y}(\lambda):=\ln \left(\mathbb{E}\left[e^{\lambda Y}\right]\right)=\ln \left(\mathbb{E}\left[e^{\lambda X}\right]^{2}\right)=2 \ln \left(\mathbb{E}\left[e^{\lambda X}\right]\right)=2 \widehat{I}_{X}(\lambda)$.

We have $I_{X}(x)=\sup _{\lambda}\left\{\lambda x-\widehat{I}_{X}(\lambda)\right\}$, thus we obtain

$$
I_{Y}(x):=\sup _{\lambda}\left\{\lambda x-\widehat{I}_{Y}(\lambda)\right\}=\sup _{\lambda}\left\{\lambda x-2 \widehat{I}_{X}(\lambda)\right\}=2 \sup _{\lambda}\left\{\lambda \frac{x}{2}-\widehat{I}_{X}(\lambda)\right\}=2 I_{X}\left(\frac{x}{2}\right) .
$$

Remark: Let X_{1}, X_{2}, \ldots be i.i.d. with the same distribution as X. Let Y_{1}, Y_{2}, \ldots be i.i.d. with the same distribution as Y. By our assumption $X_{1}+\cdots+X_{2 n}$ has the same distribution as $Y_{1}+\cdots+Y_{n}$. Thus, applying the heuristic version of Cramér's theorem twice, we obtain
$e^{-n I_{Y}(x)} \approx \mathbb{P}\left(\frac{Y_{1}+\cdots+Y_{n}}{n} \approx x\right)=\mathbb{P}\left(\frac{X_{1}+\cdots+X_{2 n}}{n} \approx x\right) \approx \mathbb{P}\left(\frac{X_{1}+\cdots+X_{2 n}}{2 n} \approx \frac{x}{2}\right) \approx e^{-2 n I_{X}\left(\frac{x}{2}\right)}$, which is another (heuristic) way of seeing $I_{Y}(x)=2 I_{X}\left(\frac{x}{2}\right)$.
(b) Let $\widehat{I}_{X}(\lambda):=\ln \left(\mathbb{E}\left[e^{\lambda X}\right]\right)$ and $\widehat{I}_{Y}(\lambda):=\ln \left(\mathbb{E}\left[e^{\lambda Y}\right]\right)=\widehat{I}_{X}(a \lambda)+\lambda b$ by HW1.1(a).

We have $I_{X}(x)=\sup _{\lambda}\left\{\lambda x-\widehat{I}_{X}(\lambda)\right\}$, thus we obtain

$$
\begin{aligned}
I_{Y}(x):=\sup _{\lambda}\left\{\lambda x-\widehat{I}_{Y}(\lambda)\right\}= & \sup _{\lambda}\left\{\lambda(x-b)-\widehat{I}_{X}(a \lambda)\right\}= \\
& \sup _{\lambda}\left\{a \lambda \frac{x-b}{a}-\widehat{I}_{X}(a \lambda)\right\}=\sup _{\lambda^{\prime}}\left\{\lambda^{\prime} \frac{x-b}{a}-\widehat{I}_{X}\left(\lambda^{\prime}\right)\right\}=I_{X}\left(\frac{x-b}{a}\right) .
\end{aligned}
$$

(c) Let X denote an (optimistic) GEO ($\frac{1}{2}$) random variable. Then $X-1$ is a pessimistic $\operatorname{GEO}\left(\frac{1}{2}\right)$ random variable and $-2(X-1)$ has the same distribution as Y_{i} in equation (1) above. We know from class (see page 28 of scanned lecture notes) that $I_{X}(x)=(x-1) \ln \left(\frac{x-1}{1-\frac{1}{2}}\right)-x \cdot \ln (x)-\ln \left(\frac{1}{2}\right)$ and if $Y=-2(X-1)=-2 X+2$ then we obtain $I_{Y}(x)=I_{X}\left(\frac{x-2}{-2}\right)=I_{X}\left(1-\frac{1}{2} x\right)$ by part (b) of this exercise. Also, it is well known that $\mathbb{E}(X)=1 /(1 / 2)=2$, thus $\mathbb{E}(Y)=-2(2-1)=-2$. Thus by Carmér's theorem we obtain

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \ln \left(\mathbb{P}\left(Y_{1}+\cdots+Y_{n} \leq n x\right)\right)=-\min _{y \in(-\infty, x]} I_{Y}(y)= \begin{cases}0 & \text { if } x \geq \mathbb{E}(Y) \tag{3}\\ -I_{Y}(x) & \text { if } x \leq \mathbb{E}(Y)\end{cases}
$$

(d) Let X_{1} and X_{2} denote i.i.d. $\operatorname{BER}(1 / 2)$ random variables. Let $Z:=X_{1}+X_{2}$ and $Y:=Z-1$. Then Y has the same distribution as Y_{i} from (2). We know from page 8 of the scanned lecture notes that $I_{X}(x)=(1-x) \ln \left(\frac{1-1 / 2}{1-x}\right)+x \ln \left(\frac{1 / 2}{x}\right)$. Now by part (a) of this exercise we have $I_{Z}(x)=2 I_{X}(x / 2)$ and by part (b) of this exercise we have $I_{Y}(x)=I_{Z}(x+1)$, thus $I_{Y}(x)=2 I_{X}\left(\frac{x+1}{2}\right)$. Also $\mathbb{E}(Y)=0$ and again by Carmér's theorem we obtain (3).
2. Let X_{1}, X_{2}, \ldots denote i.i.d. random variables with $\operatorname{EXP}(\lambda)$ distribution, i.e., the density function of X_{i} is $f(x)=\lambda e^{-\lambda x} \mathbb{1}[x \geq 0]$. Let $S_{n}=X_{1}+\cdots+X_{n}$.
(a) Use induction on n to show that the density function of S_{n} is

$$
f_{n}(x)=\lambda^{n} e^{-\lambda x} \frac{x^{n-1}}{(n-1)!} \mathbb{1}[x \geq 0] .
$$

Hint: Use the convolution formula stated on page 20 of the scanned lecture notes.
(b) Calculate the logarithmic moment generating function $\mu \mapsto \widehat{I}(\mu)$ of X_{i}. For which values of μ do we have $\widehat{I}(\mu)<+\infty$?
(c) Calculate the Legendre transform $I(x)$ of $\widehat{I}(\mu)$. For which values of x do we have $\widehat{I}(x)<+\infty$?
(d) Give a formula for $\lim _{n \rightarrow \infty} \frac{1}{n} \ln \left(\mathbb{P}\left(S_{n} / n \geq x\right)\right)$ for any $x \geq 1 / \lambda$ using Cramér's theorem (see page 21 of scanned lecture notes).
(e) Calculate $\lim _{n \rightarrow \infty} \frac{1}{n} \ln \left(\mathbb{P}\left(S_{n} / n \geq x\right)\right)$ directly using the formula for the density function f_{n} of S_{n}. Hint: Use Laplace's principle (similarly to page 15 of the scanned lecture notes) and the crude Stirling formula (see page 3 of scanned):

$$
\begin{equation*}
n^{n} e^{1-n} \leq n!\leq(n+1)^{n+1} e^{-n} \tag{4}
\end{equation*}
$$

Solution:

(a) The induction hypothesis holds if $n=1$: we indeed have $f_{1}(x)=f(x)=\lambda^{1} e^{-\lambda x} \frac{x^{0}}{0!} \mathbb{1}[x \geq 0]$. Now let's show that if we assume that it holds for n then it also holds for $n+1$: for any $x \geq 0$ we have

$$
\begin{aligned}
& f_{n+1}(x)=\left(f_{n} * f\right)(x)=\int_{-\infty}^{\infty} f_{n}(y) f(x-y) \mathrm{d} y= \\
& \int_{-\infty}^{\infty} \lambda^{n} e^{-\lambda y} \frac{y^{n-1}}{(n-1)!} \mathbb{1}[y \geq 0] \cdot \lambda e^{-\lambda(x-y)} \mathbb{1}[x-y \geq 0] \mathrm{d} y=\lambda^{n+1} e^{-\lambda x} \int_{0}^{x} \frac{y^{n-1}}{(n-1)!} \mathrm{d} y=\lambda^{n+1} e^{-\lambda x} \frac{x^{n}}{n!}
\end{aligned}
$$

(b) Since the notation λ is already reserved for the parameter of $\operatorname{EXP}(\lambda)$, let us denote by μ the variable of the logarithmic moment generating function $\widehat{I}(\mu)=\ln \left(\mathbb{E}\left(e^{\mu X_{i}}\right)\right)$.

$$
\mathbb{E}\left(e^{\mu X_{i}}\right)=\int_{0}^{\infty} e^{\mu x} f(x) \mathrm{d} x=\int_{0}^{\infty} \lambda e^{(\mu-\lambda) x} \mathrm{~d} x=\frac{\lambda}{\lambda-\mu}, \quad \text { if } \quad \mu<\lambda
$$

thus $\widehat{I}(\mu)=\ln \left(\frac{\lambda}{\lambda-\mu}\right)=\ln (\lambda)-\ln (\lambda-\mu)$ if $\mu<\lambda$ and $\widehat{I}(\mu)=+\infty$ if $\mu \geq \lambda$.
(c) $I(x)=\sup _{\mu}\{\mu x-\widehat{I}(\mu)\} . \widehat{I}^{\prime}(\mu)=\frac{1}{\lambda-\mu}$. Given x we want μ^{*} such that $\widehat{I}^{\prime}\left(\mu^{*}\right)=x$. Thus $\mu^{*}=\lambda-\frac{1}{x}$ and if $x>0$ then

$$
I(x)=\mu^{*} x-\widehat{I}\left(\mu^{*}\right)=\lambda x-1-\ln \left(\frac{\lambda}{\lambda-\mu^{*}}\right)=\lambda x-1-\ln (\lambda x)
$$

If $x<0$ then $I(x)=+\infty$ because for $\mu \leq 0$ we have $\widehat{I}(\mu) \leq 0$, thus $\lim _{\mu \rightarrow-\infty}\{\mu x-\widehat{I}(\mu)\}=+\infty$.
(d) We have $\mathbb{E}\left(X_{i}\right)=1 / \lambda$, thus by Cramér's theorem we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \ln \left(\mathbb{P}\left(S_{n} / n \geq x\right)\right)=-\inf _{y \geq x} I(y)=-I(x)=\ln (\lambda x)+1-\lambda x, \quad x>1 / \lambda . \tag{5}
\end{equation*}
$$

(e) The density function of S_{n} / n is $g_{n}(x)=n f_{n}(n x)$, thus for $x>1 / \lambda$ we have

$$
g_{n}(x)=n \lambda^{n} e^{-\lambda n x} \frac{(n x)^{n-1}}{(n-1)!}=n \lambda^{n} e^{-\lambda n x} \frac{n^{n} x^{n-1}}{n!}, \quad \mathbb{P}\left(S_{n} / n \geq x\right)=\int_{x}^{\infty} g_{n}(y) \mathrm{d} y
$$

therefore by (4) we get

$$
n\left(\frac{n}{n+1}\right)^{n} \int_{x}^{\infty} \frac{1}{y}\left(\lambda e^{-\lambda y} e y\right)^{n} \mathrm{~d} y \leq \mathbb{P}\left(S_{n} / n \geq x\right) \leq n \int_{x}^{\infty} \frac{1}{y}\left(\lambda e^{-\lambda y} e y\right)^{n} \mathrm{~d} y
$$

thus

$$
\begin{equation*}
\mathbb{P}\left(S_{n} / n \geq x\right) \approx \int_{x}^{\infty} \frac{1}{y}\left(\lambda e^{-\lambda y} e y\right)^{n} \mathrm{~d} y=\int_{x}^{\infty} \frac{1}{y} e^{n(\ln (\lambda y)-\lambda y+1)} \mathrm{d} y=\int_{x}^{\infty} \frac{1}{y} e^{-n I(y)} \mathrm{d} y \tag{6}
\end{equation*}
$$

We will show

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \ln \left(\int_{x}^{\infty} \frac{1}{y} e^{-n I(y)} \mathrm{d} y\right)=-I(x) \tag{7}
\end{equation*}
$$

We have

$$
\begin{equation*}
\frac{1}{2 x} \int_{x}^{2 x} e^{-n I(y)} \mathrm{d} y \leq \int_{x}^{\infty} \frac{1}{y} e^{-n I(y)} \mathrm{d} y \leq \frac{1}{x} \int_{x}^{\infty} e^{-n I(y)} \mathrm{d} y \tag{8}
\end{equation*}
$$

Applying the Laplace lemma twice, for any $x>1 / \lambda$ we obtain

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{1}{n} \ln \left(\int_{x}^{\infty} e^{-n I(y)} \mathrm{d} y\right)=-\inf _{y \geq x} I(y)=-I(x), \\
\lim _{n \rightarrow \infty} \frac{1}{n} \ln \left(\int_{x}^{2 x} e^{-n I(y)} \mathrm{d} y\right)=-\inf _{y \in[x, 2 x]} I(y)=-I(x) .
\end{gathered}
$$

Putting these together with (8), we obtain (7), which, together with (6) gives an alternative proof of (5).
3. Let X_{n} denote an optimistic geometric random variable with success probability $p=1 / n$. Show that $X_{n} / \mathbb{E}\left(X_{n}\right)$ converges in distribution as $n \rightarrow \infty$ and identify the limiting distribution.

Solution: For any non-negative integer m we have $\mathbb{P}\left(X_{n}>m\right)=(1-p)^{m}$ since $X_{n}>m$ means the first m trials were unsuccessful. Note that $\mathbb{E}\left(X_{n}\right)=\frac{1}{p}=n$. For any $x \geq 0$ we have

$$
\begin{aligned}
& \mathbb{P}\left(\frac{X_{n}}{\mathbb{E}\left(X_{n}\right)} \leq x\right)=\mathbb{P}\left(\frac{X_{n}}{n} \leq x\right)=\mathbb{P}\left(X_{n} \leq x n\right)=\mathbb{P}\left(X_{n} \leq\lfloor x n\rfloor\right)= \\
& 1-\mathbb{P}\left(X_{n}>\lfloor x n\rfloor\right)=1-(1-p)^{\lfloor x n\rfloor}=1-\left(1-\frac{1}{n}\right)^{\lfloor x n\rfloor} \rightarrow 1-e^{-x}, \quad n \rightarrow \infty .
\end{aligned}
$$

For any $x \leq 0$ we have $\mathbb{P}\left(\frac{X_{n}}{\mathbb{E}\left(X_{n}\right)} \leq x\right)=0$. Thus, if we denote by F_{n} the c.d.f. of $X_{n} / \mathbb{E}\left(X_{n}\right)$ and we denote $F(x)=1-e^{-x}$ for $x \geq 0$ and $F(x)=0$ for $x \leq 0$ then F_{n} converges point-wise to F.
This means $\frac{X_{n}}{\mathbb{E}\left(X_{n}\right)} \Rightarrow \operatorname{EXP}(1)$, since F is the c.d.f. of the $\operatorname{EXP}(1)$ distribution.

