Limit/large dev. thms. HW assignment 3. Due Wednesday, March 6 at 12.15

Note: Write your name and Neptun code on each piece of paper that you submit. Separate the solutions of different exercises with a horizontal line. Highlight the final answer. If you submit your homework electronically, pdf format is preferred.

- 1. (10 marks)
 - (a) Let I denote the Legendre transform of the logarithmic moment generating function of X. Let $Y := X_1 + X_2$, where X_1 and X_2 are i.i.d. copies of X. Find the Legendre transform of the logarithmic moment generating function of Y.
 - (b) Let I denote the Legendre transform of the logarithmic moment generating function of X. Let Y := aX + b (where $a, b \in \mathbb{R}$). Find the Legendre transform of the log. mom. gen. function of Y.
 - (c) Let Y_1, Y_2, \ldots denote i.i.d. integer-valued random variables with distribution

$$\mathbb{P}(Y_i = -2k) = 2^{-(k+1)}, \qquad k = 0, 1, 2, \dots$$

Find $\lim_{n\to\infty} \frac{1}{n} \ln \left(\mathbb{P}(Y_1 + \dots + Y_n \leq nx) \right)$ for any $x \in \mathbb{R}$.

(d) Let Y_1, Y_2, \ldots denote i.i.d. integer-valued random variables with distribution

$$\mathbb{P}(Y_i = -1) = 1/4, \quad \mathbb{P}(Y_i = 0) = 1/2, \quad \mathbb{P}(Y_i = 1) = 1/4.$$

Find $\lim_{n\to\infty} \frac{1}{n} \ln \left(\mathbb{P} \left(Y_1 + \dots + Y_n \leq nx \right) \right)$ for any $x \in \mathbb{R}$.

Hint: For (c) and (d), you can use Cramér's theorem and the explicit formulas for the large deviation rate functions of famous random variables that we have learnt in class.

- 2. (15 marks) Let X_1, X_2, \ldots denote i.i.d. random variables with $\text{EXP}(\lambda)$ distribution, i.e., the density function of X_i is $f(x) = \lambda e^{-\lambda x} \mathbb{1}[x \ge 0]$. Let $S_n = X_1 + \cdots + X_n$.
 - (a) Use induction on n to show that the density function of S_n is

$$f_n(x) = \lambda^n e^{-\lambda x} \frac{x^{n-1}}{(n-1)!} \mathbb{1}[x \ge 0].$$

Hint: Use the convolution formula stated on page 20 of the scanned lecture notes.

- (b) Calculate the logarithmic moment generating function $\mu \mapsto \widehat{I}(\mu)$ of X_i . For which values of μ do we have $\widehat{I}(\mu) < +\infty$?
- (c) Calculate the Legendre transform I(x) of $\widehat{I}(\mu)$. For which values of x do we have $\widehat{I}(x) < +\infty$?
- (d) Give a formula for $\lim_{n\to\infty} \frac{1}{n} \ln (\mathbb{P}(S_n/n \ge x))$ for any $x \ge 1/\lambda$ using Cramér's theorem (see page 21 of scanned lecture notes).
- (e) Calculate $\lim_{n\to\infty} \frac{1}{n} \ln (\mathbb{P}(S_n/n \ge x))$ directly using the formula for the density function f_n of S_n . *Hint:* Use Laplace's principle (similarly to page 15 of the scanned lecture notes) and the crude Stirling formula (see page 3 of scanned):

$$n^{n}e^{1-n} \le n! \le (n+1)^{n+1}e^{-n}$$

3. (5 marks) Let X_n denote an optimistic geometric random variable with success probability p = 1/n. Show that $X_n/\mathbb{E}(X_n)$ converges in distribution as $n \to \infty$ and identify the limiting distribution.