
Limit/large dev. thms. HW assignment 2., Solutions
1. Let λ 7→ Z(λ) denote the moment generating function of the random variable X. If Z(µ) < +∞, let
X(µ) denote the exponentially tilted random variable. The cumulative distribution function of X(µ) is

Fµ(x) = P(X(µ) ≤ x) =
E(eµX11[X ≤ x])

Z(µ)
.

We have learnt some facts about exponential tilting in class, see page 17-18 of scanned lecture notes.

(a) Show that X(λ)(µ) ∼ X(λ+µ). In words: tilting the tilted random variable amounts to tilting the
original random variable with the sum of the two tiltings.

(b) Express the logarithmic moment generating function Îµ of X(µ) using the logarithmic moment
generating function Î of X.

(c) Express the Legendre transform Iµ of Îµ using the Legendre transform I of Î.

Solution:

(a) We have learnt in class (see page 18 of scanned) that E(g(X(µ))) = E(eµXg(X))/E(eµX). We apply
this formula in the numerator as well as the denominator in equation (∗) below:

P
(
X(µ)(λ)

≤ x
)

=
E
(
eλX

(µ)

1[X(µ) ≤ x]
)

E(eλX(µ))

(∗)
=

E
(
eµXeλX1[X ≤ x]

)
/E
(
eµX

)
E(eµXeλX)/E (eµX)

=

E
(
e(λ+µ)X1[X ≤ x]

)
E(e(λ+µ)X)

= P[X(λ+µ) ≤ x]

This shows that X(µ)(λ) ∼ X(µ+λ).

(b) Îµ(λ) = ln
(
E(eλX

(µ)

)
)

= ln
(
E(eµXeλX)/E(eµX)

)
= Î(µ+ λ)− Î(µ)

(c)

Iµ(x) = sup
λ
{λx− Îµ(λ)} = sup

λ
{λx− Î(µ+ λ) + Î(µ)} =

Î(µ)− µx+ sup
λ
{(λ+ µ)x− Î(µ+ λ)} = Î(µ)− µx+ I(x) = I(x)− µx+ Î(µ).

Remark: Alternative proof of Iµ(x) = I(x)− µx+ Î(µ) using our non-rigorous Cramér formalism:
we know that X(µ)

1 + · · ·+X
(µ)
n has the same distribution as S(µ)

n , thus

e−nIµ(x) ∼∼∼ P
(
S(µ)
n ≈ nx

)
=

eµnx

E(eλSn)
P (Sn ≈ nx) ∼∼∼

eµnx

Z(λ)n
e−nI(x) = e−n(I(x)−µx+Î(µ)).
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2. In this exercise X(µ) denotes the random variable that we obtain by exponentially tilting the distribution
of the random variable X.

(a) Show that if X ∼ BIN(n, p) then X(µ) ∼ BIN(n, p′) for some p′ = p′(p, µ) and that any p′ ∈ (0, 1)
can be obtained by choosing µ ∈ R appropriately.

(b) Show that if X ∼ POI(λ) then X(µ) ∼ POI(λ′) for some λ′ = λ′(λ, µ) and that any λ′ ∈ (0,+∞)
can be obtained by choosing µ ∈ R appropriately.

(c) If X ∼ EXP(λ), find the values of µ for which Z(µ) < +∞ (i.e., find the domain of the moment
generating function Z(·)). Show that X(µ) ∼ EXP(λ′) for some λ′ = λ′(λ, µ) and that any λ′ ∈
(0,+∞) can be obtained by choosing µ from the domain of Z(·) appropriately.

(d) Show that if X ∼ N (m,σ2) then X(µ) ∼ N (m′, σ2) for some m′ = m′(m,µ, σ) and that any
m′ ∈ (−∞,+∞) can be obtained by choosing µ ∈ R appropriately.

Solution:

(a) If X ∼ BIN(n, p) then Z(µ) = (peµ + (1 − p))n (since X is the sum of n i.i.d. BER(p) random
variables), thus

P(X(µ) = k) = (peµ + (1− p))−neµk
(
n

k

)
pk(1− p)n−k =(

n

k

)(
peµ

peµ + (1− p)

)k (
(1− p)

peµ + (1− p)

)n−k
, thus X(µ) ∼ BIN

(
n,

peµ

peµ + (1− p)

)
.

Thus p′(p, µ) = peµ

peµ+(1−p) . Clearly, limµ→−∞ p′(p, µ) = 0 and limµ→+∞ p′(p, µ) = 1, so indeed any
p′ ∈ (0, 1) can be obtained by choosing µ ∈ R appropriately.

(b) If X ∼ POI(λ) then Z(µ) = e(eµ−1)λ, thus

P(X(µ) = k) = e(1−eµ)λeµke−λ
λk

k!
= e−e

µλ (eµλ)k

k!
, thus X(µ) ∼ POI (eµλ) .

Thus λ′(λ, µ) = eµλ. Clearly, limµ→−∞ λ′(λ, µ) = 0 and limµ→+∞ λ′(λ, µ) = +∞, so indeed any
λ′ ∈ (0,+∞) can be obtained by choosing µ ∈ R appropriately.

(c) If X ∼ EXP(λ) then the density function of X is f(x) = λe−λx1[x ≥ 0], thus

Z(µ) = E(eµX) =

∫ ∞
0

eµxf(x) dx =

∫ ∞
0

λe(µ−λ)x dx =
λ

λ− µ
, if µ < λ.

If µ ≥ λ then Z(µ) = +∞.
Thus f (µ)(x) = Z(µ)−1eµxf(x) = (λ − µ)e−(λ−µ)x1[x ≥ 0], thus X(µ) ∼ EXP (λ− µ), if µ < λ.
Thus λ′(λ, µ) = λ− µ. Clearly, any λ′ ∈ (0,+∞) can be obtained by choosing µ = λ− λ′.

(d) If X ∼ N (m,σ2) then f(x) = 1
σ
√

2π
exp

(
− (x−m)2

2σ2

)
and Z(µ) = exp(µm+ 1

2σ
2µ2), thus

f (µ)(x) = Z(µ)−1eµxf(x) =
1

σ
√

2π
exp

(
− (x−m)2

2σ2
+ µx− µm− 1

2
σ2µ2

)
=

1

σ
√

2π
exp

(
− (x−m− σ2µ)2

2σ2

)
, thus X(µ) ∼ N

(
m+ σ2µ, σ2

)
.

Thus, m′(m,µ, σ) = m + σ2µ and indeed any m′ ∈ (−∞,+∞) can be obtained by choosing µ ∈ R
appropriately.
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3. Let X1, X2, . . . denote i.i.d. non-negative integer-valued random variables with distribution P(Xi = k) =
pk, where k = 0, 1, 2, . . . Let λ ∈ R such that Z(λ) = E[eλXi ] < +∞. Let Sn = X1 + · · ·+Xn.

Let X(λ)
1 , X

(λ)
2 , . . . denote i.i.d. non-negative integer-valued random variables with distribution

P(X
(λ)
i = k) =

1

Z(λ)
eλkpk, where k = 0, 1, 2, . . .

(a) Show that we have P(X
(λ)
1 + · · ·+X

(λ)
n = k) = eλkP(X1+···+Xn=k)

Z(λ)n .
Instruction: This could be easily derived from the Lemma on page 20 of the scanned lecture notes,
but since we only proved that lemma in the absolutely continuous case, I ask you to write down a
complete proof of this sub-exercise only using the basic facts about exponential tilting (page 17-18
of scanned lecture notes).

(b) Show that P(X
(λ)
1 = k |X(λ)

1 + · · ·+X
(λ)
n = m) = P(X1 = k |X1 + · · ·+Xn = m).

(c) If Xi ∼ POI(µ), what is the conditional distribution of X1 given that X1 + · · ·+Xn = bnxc?
(d) If Xi ∼ POI(µ), show that for any x > 0 we have

lim
n→∞

P(X1 = k |X1 + · · ·+Xn = bnxc) = e−x
xk

k!
.

Remark: This last result is a rigorous version of the result proved heuristically on page 25 of the
scanned lecture notes (also note that an exponentially tilted Poisson random variable is still a Poisson
random variable with a different parameter)

Solution:

(a) Denote by Λ the set of n-tuples (k1, . . . , kn) of non-negative integers that satisfy k1 + · · ·+ kn = k.

P(X
(λ)
1 + · · ·+X(λ)

n = k) =
∑

(k1,...,kn)∈Λ

P(X
(λ)
1 = k1, . . . , X

(λ)
n = kn) =

∑
(k1,...,kn)∈Λ

P(X
(λ)
1 = k1) . . .P(X(λ)

n = kn) =
∑

(k1,...,kn)∈Λ

eλk1pk1
Z(λ)

. . .
eλknpkn
Z(λ)

=

eλk

Z(λ)n

∑
(k1,...,kn)∈Λ

pk1 . . . pkn =
eλk

Z(λ)n

∑
(k1,...,kn)∈Λ

P(X1 = k1, . . . , Xn = kn) =

eλkP(X1 + · · ·+Xn = k)

Z(λ)n

(b)

P(X
(λ)
1 = k |X(λ)

1 + · · ·+X(λ)
n = m) =

P(X
(λ)
1 = k, X

(λ)
2 + · · ·+X

(λ)
n = m− k)

P(X
(λ)
1 + · · ·+X

(λ)
n = m)

=

P(X
(λ)
1 = k)P(X

(λ)
2 + · · ·+X

(λ)
n = m− k)

P(X
(λ)
1 + · · ·+X

(λ)
n = m)

=

eλkpk
Z(λ)

eλ(m−k)P(X2+···+Xn=m−k)
(Z(λ))n−1

eλmP(X1+···+Xn=m)
(Z(λ))n

=

pk · P(X2 + · · ·+Xn = m− k)

P(X1 + · · ·+Xn = m)
= P(X1 = k |X1 + · · ·+Xn = m)

(c) Let Y = X2 + · · ·+Xn. Then Y ∼ POI((n− 1)µ). For any 0 ≤ k ≤ bnxc we have

P(X1 = k |X1 + Y = bnxc) =
P(X1 = k, Y = bnxc − k)

P(X1 + Y = bnxc)
=
e−µ µ

k

k! · e
−(n−1)µ ((n−1)µ)bnxc−k

(bnxc−k)!

e−nµ (nµ)bnxc

bnxc!

=

µk

k! ·
((n−1)µ)bnxc−k

(bnxc−k)!

(nµ)bnxc

bnxc!

=
bnxc!

k!(bnxc − k)!

µk · ((n− 1)µ)bnxc−k

(nµ)bnxc
=

(
bnxc
k

)(
1

n

)k (
1− 1

n

)bnxc−k
,

thus the conditional distribution of X1 given that X1 + Y = bnxc is BIN
(
bnxc, 1

n

)
.
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(d)

lim
n→∞

bnxc!
k!(bnxc − k)!

(
1

n

)k (
1− 1

n

)bnxc−k
=

1

k!
lim
n→∞

bnxc
n

bnxc − 1

n
. . .
bnxc − (k − 1)

n

(
1− 1

n

)bnxc−k
=

1

k!
xke−x.
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