Limit/large dev. thms. HW assignment 2., Solutions

1. Let $\lambda \mapsto Z(\lambda)$ denote the moment generating function of the random variable X. If $Z(\mu)<+\infty$, let $X^{(\mu)}$ denote the exponentially tilted random variable. The cumulative distribution function of $X^{(\mu)}$ is

$$
F_{\mu}(x)=\mathbb{P}\left(X^{(\mu)} \leq x\right)=\frac{\mathbb{E}\left(e^{\mu X} \mathbb{1}[X \leq x]\right)}{Z(\mu)} .
$$

We have learnt some facts about exponential tilting in class, see page 17-18 of scanned lecture notes.
(a) Show that $X^{(\lambda)}{ }^{(\mu)} \sim X^{(\lambda+\mu)}$. In words: tilting the tilted random variable amounts to tilting the original random variable with the sum of the two tiltings.
(b) Express the logarithmic moment generating function \widehat{I}_{μ} of $X^{(\mu)}$ using the logarithmic moment generating function \widehat{I} of X.
(c) Express the Legendre transform I_{μ} of \widehat{I}_{μ} using the Legendre transform I of \widehat{I}.

Solution:

(a) We have learnt in class (see page 18 of scanned) that $\mathbb{E}\left(g\left(X^{(\mu)}\right)\right)=\mathbb{E}\left(e^{\mu X} g(X)\right) / \mathbb{E}\left(e^{\mu X}\right)$. We apply this formula in the numerator as well as the denominator in equation $(*)$ below:

$$
\begin{aligned}
& \mathbb{P}\left(X^{(\mu)}(\lambda)\right.\leq x)=\frac{\mathbb{E}\left(e^{\lambda X^{(\mu)}} \mathbb{1}\left[X^{(\mu)} \leq x\right]\right)}{\mathbb{E}\left(e^{\lambda X^{(\mu)}}\right)} \stackrel{(*)}{=} \frac{\mathbb{E}\left(e^{\mu X} e^{\lambda X} \mathbb{1}[X \leq x]\right) / \mathbb{E}\left(e^{\mu X}\right)}{\mathbb{E}\left(e^{\mu X} e^{\lambda X}\right) / \mathbb{E}\left(e^{\mu X}\right)}= \\
& \frac{\mathbb{E}\left(e^{(\lambda+\mu) X} \mathbb{1}[X \leq x]\right)}{\mathbb{E}\left(e^{(\lambda+\mu) X}\right)}=\mathbb{P}\left[X^{(\lambda+\mu)} \leq x\right]
\end{aligned}
$$

This shows that $X^{(\mu)}{ }^{(\lambda)} \sim X^{(\mu+\lambda)}$.
(b) $\widehat{I}_{\mu}(\lambda)=\ln \left(\mathbb{E}\left(e^{\lambda X^{(\mu)}}\right)\right)=\ln \left(\mathbb{E}\left(e^{\mu X} e^{\lambda X}\right) / \mathbb{E}\left(e^{\mu X}\right)\right)=\widehat{I}(\mu+\lambda)-\widehat{I}(\mu)$
(c)

$$
\begin{aligned}
& I_{\mu}(x)=\sup _{\lambda}\left\{\lambda x-\widehat{I}_{\mu}(\lambda)\right\}=\sup _{\lambda}\{\lambda x-\widehat{I}(\mu+\lambda)+\widehat{I}(\mu)\}= \\
& \quad \widehat{I}(\mu)-\mu x+\sup _{\lambda}\{(\lambda+\mu) x-\widehat{I}(\mu+\lambda)\}=\widehat{I}(\mu)-\mu x+I(x)=I(x)-\mu x+\widehat{I}(\mu) .
\end{aligned}
$$

Remark: Alternative proof of $I_{\mu}(x)=I(x)-\mu x+\widehat{I}(\mu)$ using our non-rigorous Cramér formalism: we know that $X_{1}^{(\mu)}+\cdots+X_{n}^{(\mu)}$ has the same distribution as $S_{n}^{(\mu)}$, thus

$$
e^{-n I_{\mu}(x)} \approx \mathbb{P}\left(S_{n}^{(\mu)} \approx n x\right)=\frac{e^{\mu n x}}{\mathbb{E}\left(e^{\lambda S_{n}}\right)} \mathbb{P}\left(S_{n} \approx n x\right) \approx \frac{e^{\mu n x}}{Z(\lambda)^{n}} e^{-n I(x)}=e^{-n(I(x)-\mu x+\widehat{I}(\mu))}
$$

2. In this exercise $X^{(\mu)}$ denotes the random variable that we obtain by exponentially tilting the distribution of the random variable X.
(a) Show that if $X \sim \operatorname{BIN}(n, p)$ then $X^{(\mu)} \sim \operatorname{BIN}\left(n, p^{\prime}\right)$ for some $p^{\prime}=p^{\prime}(p, \mu)$ and that any $p^{\prime} \in(0,1)$ can be obtained by choosing $\mu \in \mathbb{R}$ appropriately.
(b) Show that if $X \sim \operatorname{POI}(\lambda)$ then $X^{(\mu)} \sim \operatorname{POI}\left(\lambda^{\prime}\right)$ for some $\lambda^{\prime}=\lambda^{\prime}(\lambda, \mu)$ and that any $\lambda^{\prime} \in(0,+\infty)$ can be obtained by choosing $\mu \in \mathbb{R}$ appropriately.
(c) If $X \sim \operatorname{EXP}(\lambda)$, find the values of μ for which $Z(\mu)<+\infty$ (i.e., find the domain of the moment generating function $Z(\cdot))$. Show that $X^{(\mu)} \sim \operatorname{EXP}\left(\lambda^{\prime}\right)$ for some $\lambda^{\prime}=\lambda^{\prime}(\lambda, \mu)$ and that any $\lambda^{\prime} \in$ $(0,+\infty)$ can be obtained by choosing μ from the domain of $Z(\cdot)$ appropriately.
(d) Show that if $X \sim \mathcal{N}\left(m, \sigma^{2}\right)$ then $X^{(\mu)} \sim \mathcal{N}\left(m^{\prime}, \sigma^{2}\right)$ for some $m^{\prime}=m^{\prime}(m, \mu, \sigma)$ and that any $m^{\prime} \in(-\infty,+\infty)$ can be obtained by choosing $\mu \in \mathbb{R}$ appropriately.

Solution:

(a) If $X \sim \operatorname{BIN}(n, p)$ then $Z(\mu)=\left(p e^{\mu}+(1-p)\right)^{n}($ since X is the sum of n i.i.d. $\operatorname{BER}(p)$ random variables), thus

$$
\begin{aligned}
& \mathbb{P}\left(X^{(\mu)}=k\right)=\left(p e^{\mu}+(1-p)\right)^{-n} e^{\mu k}\binom{n}{k} p^{k}(1-p)^{n-k}= \\
& \quad\binom{n}{k}\left(\frac{p e^{\mu}}{p e^{\mu}+(1-p)}\right)^{k}\left(\frac{(1-p)}{p e^{\mu}+(1-p)}\right)^{n-k}, \quad \text { thus } \quad X^{(\mu)} \sim \operatorname{BIN}\left(n, \frac{p e^{\mu}}{p e^{\mu}+(1-p)}\right) .
\end{aligned}
$$

Thus $p^{\prime}(p, \mu)=\frac{p e^{\mu}}{p e^{\mu}+(1-p)}$. Clearly, $\lim _{\mu \rightarrow-\infty} p^{\prime}(p, \mu)=0$ and $\lim _{\mu \rightarrow+\infty} p^{\prime}(p, \mu)=1$, so indeed any $p^{\prime} \in(0,1)$ can be obtained by choosing $\mu \in \mathbb{R}$ appropriately.
(b) If $X \sim \operatorname{POI}(\lambda)$ then $Z(\mu)=e^{\left(e^{\mu}-1\right) \lambda}$, thus

$$
\mathbb{P}\left(X^{(\mu)}=k\right)=e^{\left(1-e^{\mu}\right) \lambda} e^{\mu k} e^{-\lambda} \frac{\lambda^{k}}{k!}=e^{-e^{\mu} \lambda} \frac{\left(e^{\mu} \lambda\right)^{k}}{k!}, \quad \text { thus } \quad X^{(\mu)} \sim \operatorname{POI}\left(e^{\mu} \lambda\right) .
$$

Thus $\lambda^{\prime}(\lambda, \mu)=e^{\mu} \lambda$. Clearly, $\lim _{\mu \rightarrow-\infty} \lambda^{\prime}(\lambda, \mu)=0$ and $\lim _{\mu \rightarrow+\infty} \lambda^{\prime}(\lambda, \mu)=+\infty$, so indeed any $\lambda^{\prime} \in(0,+\infty)$ can be obtained by choosing $\mu \in \mathbb{R}$ appropriately.
(c) If $X \sim \operatorname{EXP}(\lambda)$ then the density function of X is $f(x)=\lambda e^{-\lambda x} \mathbb{1}[x \geq 0]$, thus

$$
Z(\mu)=\mathbb{E}\left(e^{\mu X}\right)=\int_{0}^{\infty} e^{\mu x} f(x) \mathrm{d} x=\int_{0}^{\infty} \lambda e^{(\mu-\lambda) x} \mathrm{~d} x=\frac{\lambda}{\lambda-\mu}, \quad \text { if } \quad \mu<\lambda
$$

If $\mu \geq \lambda$ then $Z(\mu)=+\infty$.
Thus $f^{(\mu)}(x)=Z(\mu)^{-1} e^{\mu x} f(x)=(\lambda-\mu) e^{-(\lambda-\mu) x} \mathbb{1}[x \geq 0]$, thus $X^{(\mu)} \sim \operatorname{EXP}(\lambda-\mu)$, if $\mu<\lambda$. Thus $\lambda^{\prime}(\lambda, \mu)=\lambda-\mu$. Clearly, any $\lambda^{\prime} \in(0,+\infty)$ can be obtained by choosing $\mu=\lambda-\lambda^{\prime}$.
(d) If $X \sim \mathcal{N}\left(m, \sigma^{2}\right)$ then $f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-m)^{2}}{2 \sigma^{2}}\right)$ and $Z(\mu)=\exp \left(\mu m+\frac{1}{2} \sigma^{2} \mu^{2}\right)$, thus

$$
\begin{aligned}
f^{(\mu)}(x)=Z(\mu)^{-1} e^{\mu x} f(x)= & \frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-m)^{2}}{2 \sigma^{2}}+\mu x-\mu m-\frac{1}{2} \sigma^{2} \mu^{2}\right)= \\
& \frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{\left(x-m-\sigma^{2} \mu\right)^{2}}{2 \sigma^{2}}\right), \quad \text { thus } \quad X^{(\mu)} \sim \mathcal{N}\left(m+\sigma^{2} \mu, \sigma^{2}\right)
\end{aligned}
$$

Thus, $m^{\prime}(m, \mu, \sigma)=m+\sigma^{2} \mu$ and indeed any $m^{\prime} \in(-\infty,+\infty)$ can be obtained by choosing $\mu \in \mathbb{R}$ appropriately.
3. Let X_{1}, X_{2}, \ldots denote i.i.d. non-negative integer-valued random variables with distribution $\mathbb{P}\left(X_{i}=k\right)=$ p_{k}, where $k=0,1,2, \ldots$ Let $\lambda \in \mathbb{R}$ such that $Z(\lambda)=\mathbb{E}\left[e^{\lambda X_{i}}\right]<+\infty$. Let $S_{n}=X_{1}+\cdots+X_{n}$.
Let $X_{1}^{(\lambda)}, X_{2}^{(\lambda)}, \ldots$ denote i.i.d. non-negative integer-valued random variables with distribution

$$
\mathbb{P}\left(X_{i}^{(\lambda)}=k\right)=\frac{1}{Z(\lambda)} e^{\lambda k} p_{k}, \quad \text { where } \quad k=0,1,2, \ldots
$$

(a) Show that we have $\mathbb{P}\left(X_{1}^{(\lambda)}+\cdots+X_{n}^{(\lambda)}=k\right)=\frac{e^{\lambda k} \mathbb{P}\left(X_{1}+\cdots+X_{n}=k\right)}{Z(\lambda)^{n}}$.

Instruction: This could be easily derived from the Lemma on page 20 of the scanned lecture notes, but since we only proved that lemma in the absolutely continuous case, I ask you to write down a complete proof of this sub-exercise only using the basic facts about exponential tilting (page 17-18 of scanned lecture notes).
(b) Show that $\mathbb{P}\left(X_{1}^{(\lambda)}=k \mid X_{1}^{(\lambda)}+\cdots+X_{n}^{(\lambda)}=m\right)=\mathbb{P}\left(X_{1}=k \mid X_{1}+\cdots+X_{n}=m\right)$.
(c) If $X_{i} \sim \operatorname{POI}(\mu)$, what is the conditional distribution of X_{1} given that $X_{1}+\cdots+X_{n}=\lfloor n x\rfloor$?
(d) If $X_{i} \sim \operatorname{POI}(\mu)$, show that for any $x>0$ we have

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(X_{1}=k \mid X_{1}+\cdots+X_{n}=\lfloor n x\rfloor\right)=e^{-x} \frac{x^{k}}{k!}
$$

Remark: This last result is a rigorous version of the result proved heuristically on page 25 of the scanned lecture notes (also note that an exponentially tilted Poisson random variable is still a Poisson random variable with a different parameter)

Solution:

(a) Denote by Λ the set of n-tuples $\left(k_{1}, \ldots, k_{n}\right)$ of non-negative integers that satisfy $k_{1}+\cdots+k_{n}=k$.

$$
\begin{aligned}
& \mathbb{P}\left(X_{1}^{(\lambda)}+\cdots+X_{n}^{(\lambda)}=k\right)=\sum_{\left(k_{1}, \ldots, k_{n}\right) \in \Lambda} \mathbb{P}\left(X_{1}^{(\lambda)}=k_{1}, \ldots, X_{n}^{(\lambda)}=k_{n}\right)= \\
& \sum_{\left(k_{1}, \ldots, k_{n}\right) \in \Lambda} \mathbb{P}\left(X_{1}^{(\lambda)}=k_{1}\right) \ldots \mathbb{P}\left(X_{n}^{(\lambda)}=k_{n}\right)=\sum_{\left(k_{1}, \ldots, k_{n}\right) \in \Lambda} \frac{e^{\lambda k_{1}} p_{k_{1}}}{Z(\lambda)} \ldots \frac{e^{\lambda k_{n}} p_{k_{n}}}{Z(\lambda)}= \\
& \frac{e^{\lambda k}}{Z(\lambda)^{n}} \sum_{\left(k_{1}, \ldots, k_{n}\right) \in \Lambda} p_{k_{1}} \ldots p_{k_{n}}=\frac{e^{\lambda k}}{Z(\lambda)^{n}} \sum_{\left(k_{1}, \ldots, k_{n}\right) \in \Lambda} \mathbb{P}\left(X_{1}=k_{1}, \ldots, X_{n}=k_{n}\right)= \\
& \frac{e^{\lambda k} \mathbb{P}\left(X_{1}+\cdots+X_{n}=k\right)}{Z(\lambda)^{n}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \mathbb{P}\left(X_{1}^{(\lambda)}=k \mid X_{1}^{(\lambda)}+\cdots+X_{n}^{(\lambda)}=m\right)=\frac{\mathbb{P}\left(X_{1}^{(\lambda)}=k, X_{2}^{(\lambda)}+\cdots+X_{n}^{(\lambda)}=m-k\right)}{\mathbb{P}\left(X_{1}^{(\lambda)}+\cdots+X_{n}^{(\lambda)}=m\right)}= \\
& \begin{array}{r}
\frac{\mathbb{P}\left(X_{1}^{(\lambda)}=k\right) \mathbb{P}\left(X_{2}^{(\lambda)}+\cdots+X_{n}^{(\lambda)}=m-k\right)}{\mathbb{P}\left(X_{1}^{(\lambda)}+\cdots+X_{n}^{(\lambda)}=m\right)}=\frac{\frac{e^{\lambda k} p_{k}}{Z(\lambda)} \frac{e^{\lambda(m-k)} \mathbb{P}\left(X_{2}+\cdots+X_{n}=m-k\right)}{(Z(\lambda))^{n-1}}}{\frac{e^{\lambda m} \mathbb{P}\left(X_{1}+\cdots+X_{n}=m\right)}{(Z(\lambda))^{n}}}= \\
\quad \frac{p_{k} \cdot \mathbb{P}\left(X_{2}+\cdots+X_{n}=m-k\right)}{\mathbb{P}\left(X_{1}+\cdots+X_{n}=m\right)}=\mathbb{P}\left(X_{1}=k \mid X_{1}+\cdots+X_{n}=m\right)
\end{array}
\end{aligned}
$$

(c) Let $Y=X_{2}+\cdots+X_{n}$. Then $Y \sim \operatorname{POI}((n-1) \mu)$. For any $0 \leq k \leq\lfloor n x\rfloor$ we have

$$
\begin{aligned}
& \mathbb{P}\left(X_{1}=k \backslash X_{1}+Y=\lfloor n x\rfloor\right)=\frac{\mathbb{P}\left(X_{1}=k, Y=\lfloor n x\rfloor-k\right)}{\mathbb{P}\left(X_{1}+Y=\lfloor n x\rfloor\right)}=\frac{e^{-\mu \frac{\mu^{k}}{k!} \cdot e^{-(n-1) \mu} \frac{((n-1) \mu)^{\lfloor n x\rfloor-k}}{\lfloor n x\rfloor-k)!}}}{e^{-n \mu \frac{(n \mu)^{\lfloor n x\rfloor}}{\lfloor n x\rfloor!}}}= \\
& \quad \frac{\mu^{k}}{k!} \cdot \frac{((n-1) \mu)^{\lfloor n x\rfloor-k}}{(\lfloor n x\rfloor-k)!} \\
& \frac{(n \mu)^{\lfloor n x\rfloor}}{n x\rfloor!}
\end{aligned} \frac{\lfloor n x\rfloor!}{k!(\lfloor n x\rfloor-k)!} \frac{\mu^{k} \cdot((n-1) \mu)^{\lfloor n x\rfloor-k}}{(n \mu)^{\lfloor n x\rfloor}}=\binom{\lfloor n x\rfloor}{ k}\left(\frac{1}{n}\right)^{k}\left(1-\frac{1}{n}\right)^{\lfloor n x\rfloor-k}, ~, ~ l
$$

thus the conditional distribution of X_{1} given that $X_{1}+Y=\lfloor n x\rfloor$ is $\operatorname{BIN}\left(\lfloor n x\rfloor, \frac{1}{n}\right)$.
(d)

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\lfloor n x\rfloor!}{k!(\lfloor n x\rfloor-k)!}\left(\frac{1}{n}\right)^{k} & \left(1-\frac{1}{n}\right)^{\lfloor n x\rfloor-k}= \\
& \frac{1}{k!} \lim _{n \rightarrow \infty} \frac{\lfloor n x\rfloor}{n} \frac{\lfloor n x\rfloor-1}{n} \ldots \frac{\lfloor n x\rfloor-(k-1)}{n}\left(1-\frac{1}{n}\right)^{\lfloor n x\rfloor-k}=\frac{1}{k!} x^{k} e^{-x} .
\end{aligned}
$$

