Limit /large dev. thms. HW assignment 2., Solutions
1. Let A — Z()\) denote the moment generating function of the random variable X. If Z(u) < +oo, let
X ) denote the exponentially tilted random variable. The cumulative distribution function of X *) is
E(etX1[X < x])
- Z(p) ’
We have learnt some facts about exponential tilting in class, see page 17-18 of scanned lecture notes.
(a) Show that X()‘)(H) ~ XA+ In words: tilting the tilted random variable amounts to tilting the
original random variable with the sum of the two tiltings.

(b) Express the logarithmic moment generating function f# of X using the logarithmic moment
generating function I of X.

(c) Express the Legendre transform I, of 1 . using the Legendre transform I of T.

Solution:

(a) We have learnt in class (see page 18 of scanned) that E(g(X®)) = E(e*X g(X))/E(e#X). We apply
this formula in the numerator as well as the denominator in equation () below:

E(eXX™) E(erXerX)/E (erX)
E (eMmX1[X < z])
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This shows that X®™ ~ x (),
(b) T,() = In (B(X")) = In (B(erXeXX) /B(enX)) = T+ \) — T()
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Tu(w) = sup{Az = L, (N} = sup{de = Tl +3) + 1)} =
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I(p) —ux+sgp{(k+ﬂ)w—f(u+A)} =1(p) — px + I(z) = I(x) — px + I ().
Remark: Alternative proof of I,,(z) = I(z) — px + I(1) using our non-rigorous Cramér formalism:
we know that X{”) + -+ X" has the same distribution as 5%, thus
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2. In this exercise X *) denotes the random variable that we obtain by exponentially tilting the distribution
of the random variable X.

(a) Show that if X ~ BIN(n,p) then X ~ BIN(n,p’) for some p’ = p’(p, 1) and that any p’ € (0, 1)
can be obtained by choosing © € R appropriately.

(b) Show that if X ~ POI()\) then X" ~ POI(\) for some N = X (), 1) and that any X' € (0, +00)
can be obtained by choosing 1 € R appropriately.

(¢) If X ~ EXP()), find the values of p for which Z(u) < +oo (i.e., find the domain of the moment
generating function Z(-)). Show that X ~ EXP()) for some N = X(\, u) and that any \' €
(0,+00) can be obtained by choosing p from the domain of Z(-) appropriately.

(d) Show that if X ~ AN(m,02) then X ~ N(m’,0?) for some m’ = m/(m,u,o) and that any
m’ € (—oo, +00) can be obtained by choosing p € R appropriately.

Solution:

(a) If X ~ BIN(n,p) then Z(u) = (pe + (1 — p))™ (since X is the sum of n ii.d. BER(p) random
variables), thus
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Thus p'(p, u) = pe‘ﬁi(l*p)’ Clearly, lim,_,_ p'(p, ) = 0 and lim, 4 o p'(p, ) = 1, so indeed any
p’ € (0,1) can be obtained by choosing i € R appropriately.

b) If X ~ POI()\) then Z(u) = (¢ =D thus
( 1 ,
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P(XW) =) = e(l_e“)’\e“ke_”\% = =" (ek?) . thus X9 ~ POI(et)).

Thus X'(A, p) = e#A. Clearly, lim,,,_ oo X' (A, 1) = 0 and lim,,_,4 oo X' (A, 1) = +00, so indeed any
X € (0,+00) can be obtained by choosing p € R appropriately.

(c) If X ~ EXP()) then the density function of X is f(x) = Ae™**1[x > 0], thus

Z() = B(ehX) = / e f(x) di = / NN ge = A o
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If 4> A then Z(u) = +oo.
Thus W) (z) = Z(p) ter® f(x) = (A — p)e”AW=1[z > 0], thus XW ~ EXP (A —p), if o < A
Thus A'(A, ) = A — u. Clearly, any X € (0,+00) can be obtained by choosing = A — X.

(d) If X ~ N (m,c?) then f(z) = m/lﬁ exp (—(x;:;)z) and Z(p) = exp(um + $02p?), thus
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Thus, m’(m, u, o) = m + o?p and indeed any m’ € (—oo, +00) can be obtained by choosing 1 € R
appropriately.



3. Let X1, Xo,... denote i.i.d. non-negative integer-valued random variables with distribution P(X; = k) =
pr, where k =0,1,2,... Let A € R such that Z()\) = E[e*¥/] < +o00. Let S, = X; + -+ + X,,.

Let X f/\), XQ(/\)7 ... denote i.i.d. non-negative integer-valued random variables with distribution

e*pn, where k=0,1,2,...

PO =) = 5o

Ak —
(a) Show that we have ]P’(Xy‘) +or XY = k) =% P(Xlz's('/‘\')'jx”_k).
Instruction: This could be easily derived from the Lemma on page 20 of the scanned lecture notes,
but since we only proved that lemma in the absolutely continuous case, I ask you to write down a
complete proof of this sub-exercise only using the basic facts about exponential tilting (page 17-18

of scanned lecture notes).
(b) Show that P(XM = k| XM 4o XV =m) =P(Xy = k| X1+ + X, =m).
(¢) If X; ~ POI(y), what is the conditional distribution of X; given that X; + -+ + X,, = [nz|?
(d) If X; ~ POI(p), show that for any = > 0 we have
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Remark: This last result is a rigorous version of the result proved heuristically on page 25 of the

scanned lecture notes (also note that an exponentially tilted Poisson random variable is still a Poisson
random variable with a different parameter)

li_>m PX;=k| X1+ +X,=|nx|])=e"

Solution:

(a) Denote by A the set of n-tuples (ki1,...,k,) of non-negative integers that satisfy k; +--- + k, = k.
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(¢c) Let Y = Xo+---4+ X,,. Then Y ~ POI((n — 1)p). For any 0 < k < |nz| we have
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thus the conditional distribution of X; given that X +Y = [nz] is BIN (|nz], ).






