Limit/large dev. thms. HW assignment 2. Due Wednesday, Mar. 6 at 12.15pm

Note: Each of the 3 questions is worth 10 marks. Write your name and Neptun code on each piece of paper that you submit. Separate the solutions of different exercises with a horizontal line. Highlight the final answer. If you submit your homework electronically, pdf format is preferred.

1. Let $\lambda \mapsto Z(\lambda)$ denote the moment generating function of the random variable X. If $Z(\mu) < +\infty$, let $X^{(\mu)}$ denote the *exponentially tilted* random variable. The cumulative distribution function of $X^{(\mu)}$ is

$$F_{\mu}(x) = \mathbb{P}(X^{(\mu)} \le x) = \frac{\mathbb{E}(e^{\mu X} \mathbb{1}[X \le x])}{Z(\mu)}.$$

We have learnt some facts about exponential tilting in class, see page 17-18 of scanned lecture notes.

- (a) Show that $X^{(\lambda)}{}^{(\mu)} \sim X^{(\lambda+\mu)}$. In words: tilting the tilted random variable amounts to tilting the original random variable with the sum of the two tiltings.
- (b) Express the logarithmic moment generating function \widehat{I}_{μ} of $X^{(\mu)}$ using the logarithmic moment generating function \widehat{I} of X.
- (c) Express the Legendre transform I_{μ} of \widehat{I}_{μ} using the Legendre transform I of \widehat{I} .
- 2. In this exercise $X^{(\mu)}$ denotes the random variable that we obtain by exponentially tilting the distribution of the random variable X.
 - (a) Show that if $X \sim BIN(n, p)$ then $X^{(\mu)} \sim BIN(n, p')$ for some $p' = p'(p, \mu)$ and that any $p' \in (0, 1)$ can be obtained by choosing $\mu \in \mathbb{R}$ appropriately.
 - (b) Show that if $X \sim \text{POI}(\lambda)$ then $X^{(\mu)} \sim \text{POI}(\lambda')$ for some $\lambda' = \lambda'(\lambda, \mu)$ and that any $\lambda' \in (0, +\infty)$ can be obtained by choosing $\mu \in \mathbb{R}$ appropriately.
 - (c) If $X \sim \text{EXP}(\lambda)$, find the values of μ for which $Z(\mu) < +\infty$ (i.e., find the domain of the moment generating function $Z(\cdot)$). Show that $X^{(\mu)} \sim \text{EXP}(\lambda')$ for some $\lambda' = \lambda'(\lambda, \mu)$ and that any $\lambda' \in (0, +\infty)$ can be obtained by choosing μ from the domain of $Z(\cdot)$ appropriately.
 - (d) Show that if $X \sim \mathcal{N}(m, \sigma^2)$ then $X^{(\mu)} \sim \mathcal{N}(m', \sigma^2)$ for some $m' = m'(m, \mu, \sigma)$ and that any $m' \in (-\infty, +\infty)$ can be obtained by choosing $\mu \in \mathbb{R}$ appropriately.
- 3. Let X_1, X_2, \ldots denote i.i.d. non-negative integer-valued random variables with distribution $\mathbb{P}(X_i = k) = p_k$, where $k = 0, 1, 2, \ldots$ Let $\lambda \in \mathbb{R}$ such that $Z(\lambda) = \mathbb{E}[e^{\lambda X_i}] < +\infty$. Let $S_n = X_1 + \cdots + X_n$.

Let $X_1^{(\lambda)}, X_2^{(\lambda)}, \ldots$ denote i.i.d. non-negative integer-valued random variables with distribution

$$\mathbb{P}(X_i^{(\lambda)} = k) = \frac{1}{Z(\lambda)} e^{\lambda k} p_k, \quad \text{where} \quad k = 0, 1, 2, \dots$$

- (a) Show that we have P(X₁^(λ) + ··· + X_n^(λ) = k) = e^{λk}P(X₁+···+X_n=k)/Z(λ)ⁿ. *Instruction:* This could be easily derived from the Lemma on page 20 of the scanned lecture notes, but since we only proved that lemma in the absolutely continuous case, I ask you to write down a complete proof of this sub-exercise only using the basic facts about exponential tilting (page 17-18 of scanned lecture notes).
- (b) Show that $\mathbb{P}(X_1^{(\lambda)} = k \mid X_1^{(\lambda)} + \dots + X_n^{(\lambda)} = m) = \mathbb{P}(X_1 = k \mid X_1 + \dots + X_n = m).$
- (c) If $X_i \sim \text{POI}(\mu)$, what is the conditional distribution of X_1 given that $X_1 + \cdots + X_n = \lfloor nx \rfloor$? *Hint:* This conditional distribution will turn out to be a famous distribution. In your proof you will need to use that the sum of independent Poisson random variables is a Poisson random variable.
- (d) If $X_i \sim \text{POI}(\mu)$, show that for any x > 0 we have

$$\lim_{n \to \infty} \mathbb{P}(X_1 = k \,|\, X_1 + \dots + X_n = \lfloor nx \rfloor) = e^{-x} \frac{x^k}{k!}$$

Remark: This last result is a rigorous version of the result proved heuristically on page 25 of the scanned lecture notes (also note that an exponentially tilted Poisson random variable is still a Poisson random variable with a different parameter according to exercise 2(b) above)