
Limit/large dev. thms. HW assignment 1.
1. (a) Express the logarithmic moment generating function (see page 7 of scanned lecture notes) of aX+ b

in terms of the logarithmic moment generating function of X.

(b) Let X and Y denote independent random variables. Express the logarithmic moment generating
function of X + Y in terms of the logarithmic moment generating functions of X and Y .

(c) LetX1, X2, . . . denote i.i.d. random variables and letN denote a non-negative integer-valued random
variable, which is independent from X1, X2, . . . Let

Y = X1 + . . . XN .

Denote by Î the log. mom. gen. function of Xi and denote by Ĵ the log. mom. gen. function of N .
Show that the log. mom. gen. function of Y is Ĵ ◦ Î.

Solution:

(a) ZX(λ) = E[eλX ]. Let Y = aX + b. We have

ZY (λ) = E[eλY ] = E[eλaX+λb] = eλbE[eλaX ] = eλbZ(aλ),

thus ÎY (λ) = ln(ZY (λ)) = λb+ ÎX(aλ).

(b) Let Z = X + Y . Then we have

ÎZ(λ) = ln(E[eλZ ]) = ln(E[eλXeλY ]) (∗)
= ln(E[eλX ]E[eλY ]) = ÎX(λ) + ÎY (λ),

where (∗) follows from the fact that the expectation of the product of independent random variables
is equal to the product of their expectations.

(c) Let pk = P(N = k) for k = 0, 1, 2, . . .

Then Ĵ(λ) = ln
(
E[eλN ]

)
= ln

(∑∞
k=0 pke

λk
)
.

Let Z(λ) = E(eλXi), thus Î(λ) = ln(Z(λ)).

ZY (λ) = E[eλY ] = E[eλX1+···+λXN ] =

∞∑
k=0

E[eλX1+···+λXN |N = k]P(N = k) =

∞∑
k=0

E[eλX1 . . . eλXk ] · pk =

∞∑
k=0

E[eλX1 ] . . .E[eλXk ] · pk =

∞∑
k=0

pkZ(λ)
k,

thus

ĨY (λ) = ln(ZY (λ)) = ln

( ∞∑
k=0

pkZ(λ)
k

)
= ln

( ∞∑
k=0

pke
Î(λ)k

)
= Ĵ

(
Î(λ)

)
.
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2. Let Y ∼ POI(10000) (Poisson distribution with parameter 10000). The goal of this exercise is to estimate
the number of zero digits (after the decimal point) before the first non-zero digit in the decimal expansion
of the probability P(Y ≥ 27182). You will give an upper bound and a lower bound using different methods.

(a) Calculate the logarithmic moment generating function Î(λ) of the POI(µ) distribution (see page 7
of the scanned lecture notes) and calculate its Legendre transform I(x) (page 9 of scanned).

(b) In order to give an upper bound on P(Y ≥ 27182), use the exponential Chebyshev’s inequality (i.e.,
the method that we used on the top of page 8 of the scanned lecture notes).

(c) In order to give a lower bound on P(Y ≥ 27182), estimate P(Y = 27182) using the crude version of
Stirling’s formula (page 3 of scanned).

(d) Based on the above calculations, what is the approximate number of zero digits (after the decimal
point) before the first non-zero digit in the decimal expansion of the probability P(Y ≥ 27182)?

Solution:

(a) If X ∼ POI(µ), then P(X = k) = e−µ µ
k

k! , hence

Z(λ) = E(eλX) =

∞∑
k=0

eλke−µ
µk

k!
= e−µ

∞∑
k=0

(µeλ)k

k!
= e−µ exp(µeλ) = exp(µ · (eλ − 1)),

which implies that Î(λ) = ln(Z(λ)) = µ · (eλ − 1). Now I(x) = maxλ∈R{xλ − Î(λ)}, thus we first
need to find λ∗ = λ∗(x) such that x = Î ′(λ∗). Now Î ′(λ) = µeλ, thus λ∗ = ln( xµ ) and

I(x) = xλ∗ − Î(λ∗) = x ln(
x

µ
)− µ · (eln(

x
µ ) − 1) = x ln

(
x

µ

)
+ µ− x if x ≥ 0.

Note that if x < 0 then I(x) = +∞ because limλ→−∞(xλ− Î(λ)) = +∞.

(b) 27182 ≈ 10000 · e, thus µ = 10000, x = 10000 · e and λ∗ = ln(xµ ) = ln(e) = 1 and

P(Y ≥ 27182) = P(eλ
∗Y ≥ eλ

∗27182) ≤ E(eλ∗Y )

eλ∗27182
=

E(eY )
e10000e

=
exp(10000 · (e− 1))

e10000e
= e−10000

(c) P(Y ≥ 27182) ≥ P(Y = 27182) = e−10000 1000027182

27182! .

Now we crudely replace 27182! by 2718227182e−27182, so e−10000 1000027182

27182! is crudely replaced by

e−10000
1000027182

2718227182e−27182
(∗)
= e−10000

1000027182

1000027182 · e27182e−27182
= e−10000,

where in (∗) we also replaced 21782 by 10000 ·e. Of course this calculation was not entirely rigorous:
in order to make it rigorous, we can use more precise versions of Stirling’s formula.

(d) We see from the upper bound of (b) and (non-rigorous) lower bound of (c) that it is OK to replace
log10(P(Y ≥ 2718)) by log10(e

−10000) = −10000 · log10(e) ≈ −4343.
Thus the number of zero digits before the first non-zero digit in the decimal expansion of the
probability P(Y ≥ 27182) is roughly 4343.

Remark: This exercise can be viewed as a large deviation theorem for the sum of i.i.d. random variables.
If X1, X2, . . . are i.i.d. with POI(µ) distribution and Sn = X1 + · · ·+Xn, then Sn ∼ POI(nµ). So what
we have just proved is a special case of Cramér’s theorem, which implies that for any x ≥ µ we have

lim
n→∞

1

n
ln

(
Sn
n
≥ x

)
= −I(x),

where I(x) was calculated in part (a) of the exercise. What we estimated in parts (b) and (c) amounts
to the case µ = 1, n = 10000 and x = e.
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3. Laplace’s principle. Let −∞ ≤ a < b ≤ +∞ and let J : (a, b) → R denote a continuous function. Let
us also assume that there is x∗ ∈ (a, b) for which J(x∗) = minx∈(a,b) J(x) and that

∫ b
a
e−J(x) dx < +∞.

Prove that

lim
n→∞

− 1

n
ln

(∫ b

a

e−nJ(x) dx

)
= J(x∗). (1)

Hint: Prove the liminf bound and the limsup bound separately.

Solution: Let us denote
α = J(x∗) = min

x∈(a,b)
J(x).

We have
e−nJ(x) ≤ e−(n−1)αe−J(x), x ∈ (a, b),

thus

ln

(∫ b

a

e−nJ(x) dx

)
≤ ln

(
e−(n−1)α

∫ b

a

e−J(x) dx

)
= −(n− 1)α+ ln

(∫ b

a

e−J(x) dx

)
,

thus

lim sup
n→∞

1

n
ln

(∫ b

a

e−nJ(x) dx

)
≤ lim
n→∞

1

n

(
−(n− 1)α+ ln

(∫ b

a

e−J(x) dx

))
= −α. (2)

Now we want to bound the integral in the other direction. We will show that for any ε > 0 we have

lim inf
n→∞

1

n
ln

(∫ b

a

e−nJ(x) dx

)
≥ −(α+ ε). (3)

Note that the fact that (3) holds for any ε > 0, together with (2), implies (1). It remains to show (3).

Let us fix ε > 0. Taking into account that J is continuous, we can find δ > 0 such that for any
x ∈ [x∗ − δ, x∗ + δ] we have J(x) ≤ α+ ε. Therefore we have∫ b

a

e−nJ(x) dx ≥
∫ x∗+δ

x∗−δ
e−nJ(x) dx ≥

∫ x∗+δ

x∗−δ
e−n(α+ε) dx = 2δe−n(α+ε),

therefore

lim inf
n→∞

1

n
ln

(∫ b

a

e−nJ(x) dx

)
≥ lim
n→∞

1

n
ln
(
2δe−n(α+ε)

)
= −(α+ ε).

This proves (3).
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