Limit/large dev. thms. HW assignment 1.

1. (a) Express the logarithmic moment generating function (see page 7 of scanned lecture notes) of aX +b
in terms of the logarithmic moment generating function of X.

(b) Let X and Y denote independent random variables. Express the logarithmic moment generating
function of X +Y in terms of the logarithmic moment generating functions of X and Y.

(¢) Let X1, Xs,... denote i.i.d. random variables and let N denote a non-negative integer-valued random
variable, which is independent from X7, Xo,... Let

Y=X:1+...Xn.

Denote by T the log. mom. gen. function of X; and denote by J the log. mom. gen. function of V.
Show that the log. mom. gen. function of Y is J o I.

Solution:
(a) Zx(\) =E[e*X]. Let Y = aX +b. We have
Zy()\) _ E[GAY] — E[e)\aXJr)\b] _ eAbE[e)\aX] _ e)‘bZ(a)\),

thus Iy () = In(Zy (\)) = Ab + Ix (a).
(b) Let Z =X +Y. Then we have

~

T2(\) = n(E[e*?]) = (B[N ]) & mEAXIEN]) = Tx(A) + Iy (V),

where (x) follows from the fact that the expectation of the product of independent random variables
is equal to the product of their expectations.

(c) Let pp =P(N =k) for k=0,1,2,...
Then J(\) = In (E[e*V]) = In (3252, pre*).
Let Z(\) = E(e*X%), thus I(A) = In(Z(\)).

Zy(\) =B[N ] = B[NtV ] = N RO AN | N = FP(N = k) =
k=0

ZE[e)‘Xl M = ZE[e/\Xl] K[y = Zka()\)k7
k=0 k=0 k=0

thus

Iy(\) = In(Zy () = In (i ka@)’€> ~In (i p,@eﬂm) =7 (f()\)) .
k=0 k=0



2. Let Y ~ POI(10000) (Poisson distribution with parameter 10000). The goal of this exercise is to estimate
the number of zero digits (after the decimal point) before the first non-zero digit in the decimal expansion
of the probability P(Y > 27182). You will give an upper bound and a lower bound using different methods.

(a) Calculate the logarithmic moment generating function I(\) of the POI(y) distribution (see page 7
of the scanned lecture notes) and calculate its Legendre transform I(x) (page 9 of scanned).

(b) In order to give an upper bound on P(Y > 27182), use the exponential Chebyshev’s inequality (i.e.,
the method that we used on the top of page 8 of the scanned lecture notes).

(¢) In order to give a lower bound on P(Y > 27182), estimate P(Y = 27182) using the crude version of
Stirling’s formula (page 3 of scanned).

(d) Based on the above calculations, what is the approximate number of zero digits (after the decimal
point) before the first non-zero digit in the decimal expansion of the probability P(Y > 27182)?

Solution:

(a) If X ~ POI(p), then P(X =k) =e HF’ hence

Z(\) = Ze)‘k _“M =e

k=0

=e M exp(uek) = exp(p - (e)\ - 1)),

which implies that 7(\) = In(Z(\)) =
need to find A* = A*(z) such that z =

—1). Now I(z) = maxyer{z\ — f()\)}, thus we first

po (e
T'(A\*). Now I'(A\) = pe*, thus \* = In(:) and

I(x):x)\*—f()\*):mln(m)—y-(eln(ﬁ)—1)—mln( )+u—x it >0.
1 [

Note that if 2 < 0 then I(z) = 400 because limy_,_ oo (zA — I(\)) = +00.
(b) 27182 ~ 10000 - ¢, thus p = 10000, 2 = 10000 - e and A* = In() = In(e) = 1 and

. . E(*Y) _ E(e¥) _ exp(10000- (e — 1)) _
_p(ATY 5 AT27182 _ _ 10000
PY 227182) =P(e” " > e ) < ezrisz = Liooooe — £10000€

(c) P(Y > 27182) > P(Y = 27182) = ¢~ 10000 10000°75%

271821
Now we crudely replace 27182! by 2718227182¢=27182 44 ¢ _10000% is crudely replaced by
10000 10000%7'%2 ) —10000 100007752 _ —10000
9718927182,—27182  © 1000027182 . 27182, —27182 € ’

where in (*) we also replaced 21782 by 10000-e. Of course this calculation was not entirely rigorous:
in order to make it rigorous, we can use more precise versions of Stirling’s formula.

(d) We see from the upper bound of (b) and (non-rigorous) lower bound of (c) that it is OK to replace
log,o(P(Y > 2718)) by log;o(e~10%90) = —10000 - log;o(e) ~ —4343.

Thus the number of zero digits before the first non-zero digit in the decimal expansion of the
probability P(Y > 27182) is roughly 4343.

Remark: This exercise can be viewed as a large deviation theorem for the sum of i.i.d. random variables.
If X1,X5,... are ii.d. with POI(u) distribution and S,, = X1 + - -- + X,,, then S,, ~ POI(nu). So what
we have just proved is a special case of Cramér’s theorem, which implies that for any = > © we have

1
lim —In <Sn > J]) = —1I(x),
n—oo N n

where I(z) was calculated in part (a) of the exercise. What we estimated in parts (b) and (c¢) amounts
to the case u =1, n = 10000 and = = e.



3. Laplace’s principle. Let —oo < a < b < 400 and let J : (a,b) — R denote a continuous function. Let
us also assume that there is 2* € (a,b) for which J(2*) = min,¢ (4, J(z) and that fab e /@ dr < +o0.

Prove that
1 b ;
: _ —nJ(x) _ *
nhm - In (/a e das) = J(z*). (1)

Hint: Prove the liminf bound and the limsup bound separately.

Solution: Let us denote

a=J(z*)= min J(z).
z€(a,b)

We have
efnJ(x) < 67(7171)0467‘](1)7 xe (a,b),

b b b
In (/ e (@) d:c) <lIn <e(”1)0‘/ e /(@) dx) =—(n—1la+ln (/ e /(@) d:v) ,
1 b 1 b
lim sup — In / e @ dg ] < lim = [ —(n—1)a+In / e @dz | | = - (2)
n—oo N a n—oo N a

Now we want to bound the integral in the other direction. We will show that for any € > 0 we have

thus

thus

b
lim inf 1 In (/ e /(@) dx) > —(a+e). (3)

n—oo nN

Note that the fact that (3) holds for any € > 0, together with (2), implies (1). It remains to show (3).

Let us fix ¢ > 0. Taking into account that J is continuous, we can find § > 0 such that for any
x € [x* — 0,2 + ] we have J(x) < a + €. Therefore we have

b x*+6 x*+6
/ e—nJ(aL‘) dz > / e—nJ(a:) dz > / e—n((x-‘ra) do = 256—71(&-'1-5)7
a T*—§ T*—§

therefore
E 1 ’ —nJ(x) . 1 —n(a+e)
liminf — In e dz | > lim —In (256 ) = —(a+e).

n—o0 N n—o00 N

This proves (3).



