Limit/large dev. thms. HW assignment 1.

1. (a) Express the logarithmic moment generating function (see page 7 of scanned lecture notes) of $a X+b$ in terms of the logarithmic moment generating function of X.
(b) Let X and Y denote independent random variables. Express the logarithmic moment generating function of $X+Y$ in terms of the logarithmic moment generating functions of X and Y.
(c) Let X_{1}, X_{2}, \ldots denote i.i.d. random variables and let N denote a non-negative integer-valued random variable, which is independent from X_{1}, X_{2}, \ldots Let

$$
Y=X_{1}+\ldots X_{N}
$$

Denote by \widehat{I} the log. mom. gen. function of X_{i} and denote by \widehat{J} the log. mom. gen. function of N. Show that the log. mom. gen. function of Y is $\widehat{J} \circ \widehat{I}$.

Solution:

(a) $Z_{X}(\lambda)=\mathbb{E}\left[e^{\lambda X}\right]$. Let $Y=a X+b$. We have

$$
Z_{Y}(\lambda)=\mathbb{E}\left[e^{\lambda Y}\right]=\mathbb{E}\left[e^{\lambda a X+\lambda b}\right]=e^{\lambda b} \mathbb{E}\left[e^{\lambda a X}\right]=e^{\lambda b} Z(a \lambda)
$$

thus $\widehat{I}_{Y}(\lambda)=\ln \left(Z_{Y}(\lambda)\right)=\lambda b+\widehat{I}_{X}(a \lambda)$.
(b) Let $Z=X+Y$. Then we have

$$
\widehat{I}_{Z}(\lambda)=\ln \left(\mathbb{E}\left[e^{\lambda Z}\right]\right)=\ln \left(\mathbb{E}\left[e^{\lambda X} e^{\lambda Y}\right]\right) \stackrel{(*)}{=} \ln \left(\mathbb{E}\left[e^{\lambda X}\right] \mathbb{E}\left[e^{\lambda Y}\right]\right)=\widehat{I}_{X}(\lambda)+\widehat{I}_{Y}(\lambda)
$$

where ($*$) follows from the fact that the expectation of the product of independent random variables is equal to the product of their expectations.
(c) Let $p_{k}=\mathbb{P}(N=k)$ for $k=0,1,2, \ldots$

Then $\widehat{J}(\lambda)=\ln \left(\mathbb{E}\left[e^{\lambda N}\right]\right)=\ln \left(\sum_{k=0}^{\infty} p_{k} e^{\lambda k}\right)$.
Let $Z(\lambda)=\mathbb{E}\left(e^{\lambda X_{i}}\right)$, thus $\widehat{I}(\lambda)=\ln (Z(\lambda))$.

$$
\begin{aligned}
Z_{Y}(\lambda)=\mathbb{E}\left[e^{\lambda Y}\right]=\mathbb{E}\left[e^{\lambda X_{1}+\cdots+\lambda X_{N}}\right]=\sum_{k=0}^{\infty} \mathbb{E}\left[e^{\lambda X_{1}+\cdots+\lambda X_{N}} \mid N=k\right] \mathbb{P}(N=k)= \\
\sum_{k=0}^{\infty} \mathbb{E}\left[e^{\lambda X_{1}} \ldots e^{\lambda X_{k}}\right] \cdot p_{k}=\sum_{k=0}^{\infty} \mathbb{E}\left[e^{\lambda X_{1}}\right] \ldots \mathbb{E}\left[e^{\lambda X_{k}}\right] \cdot p_{k}=\sum_{k=0}^{\infty} p_{k} Z(\lambda)^{k},
\end{aligned}
$$

thus

$$
\widetilde{I}_{Y}(\lambda)=\ln \left(Z_{Y}(\lambda)\right)=\ln \left(\sum_{k=0}^{\infty} p_{k} Z(\lambda)^{k}\right)=\ln \left(\sum_{k=0}^{\infty} p_{k} e^{\widehat{I}(\lambda) k}\right)=\widehat{J}(\widehat{I}(\lambda)) .
$$

2. Let $Y \sim \operatorname{POI}(10000)$ (Poisson distribution with parameter 10000). The goal of this exercise is to estimate the number of zero digits (after the decimal point) before the first non-zero digit in the decimal expansion of the probability $\mathbb{P}(Y \geq 27182)$. You will give an upper bound and a lower bound using different methods.
(a) Calculate the logarithmic moment generating function $\widehat{I}(\lambda)$ of the $\operatorname{POI}(\mu)$ distribution (see page 7 of the scanned lecture notes) and calculate its Legendre transform $I(x)$ (page 9 of scanned).
(b) In order to give an upper bound on $\mathbb{P}(Y \geq 27182)$, use the exponential Chebyshev's inequality (i.e., the method that we used on the top of page 8 of the scanned lecture notes).
(c) In order to give a lower bound on $\mathbb{P}(Y \geq 27182)$, estimate $\mathbb{P}(Y=27182)$ using the crude version of Stirling's formula (page 3 of scanned).
(d) Based on the above calculations, what is the approximate number of zero digits (after the decimal point) before the first non-zero digit in the decimal expansion of the probability $\mathbb{P}(Y \geq 27182)$?

Solution:

(a) If $X \sim \operatorname{POI}(\mu)$, then $\mathbb{P}(X=k)=e^{-\mu \frac{\mu^{k}}{k!} \text {, hence }}$

$$
Z(\lambda)=\mathbb{E}\left(e^{\lambda X}\right)=\sum_{k=0}^{\infty} e^{\lambda k} e^{-\mu} \frac{\mu^{k}}{k!}=e^{-\mu} \sum_{k=0}^{\infty} \frac{\left(\mu e^{\lambda}\right)^{k}}{k!}=e^{-\mu} \exp \left(\mu e^{\lambda}\right)=\exp \left(\mu \cdot\left(e^{\lambda}-1\right)\right)
$$

which implies that $\widehat{I}(\lambda)=\ln (Z(\lambda))=\mu \cdot\left(e^{\lambda}-1\right)$. Now $I(x)=\max _{\lambda \in \mathbb{R}}\{x \lambda-\widehat{I}(\lambda)\}$, thus we first need to find $\lambda^{*}=\lambda^{*}(x)$ such that $x=\widehat{I}^{\prime}\left(\lambda^{*}\right)$. Now $\widehat{I}^{\prime}(\lambda)=\mu e^{\lambda}$, thus $\lambda^{*}=\ln \left(\frac{x}{\mu}\right)$ and

$$
I(x)=x \lambda^{*}-\widehat{I}\left(\lambda^{*}\right)=x \ln \left(\frac{x}{\mu}\right)-\mu \cdot\left(e^{\ln \left(\frac{x}{\mu}\right)}-1\right)=x \ln \left(\frac{x}{\mu}\right)+\mu-x \quad \text { if } \quad x \geq 0
$$

Note that if $x<0$ then $I(x)=+\infty$ because $\lim _{\lambda \rightarrow-\infty}(x \lambda-\widehat{I}(\lambda))=+\infty$.
(b) $27182 \approx 10000 \cdot e$, thus $\mu=10000, x=10000 \cdot e$ and $\lambda^{*}=\ln \left(\frac{x}{\mu}\right)=\ln (e)=1$ and

$$
\mathbb{P}(Y \geq 27182)=\mathbb{P}\left(e^{\lambda^{*} Y} \geq e^{\lambda^{*} 27182}\right) \leq \frac{\mathbb{E}\left(e^{\lambda^{*} Y}\right)}{e^{\lambda^{*} 27182}}=\frac{\mathbb{E}\left(e^{Y}\right)}{e^{10000 e}}=\frac{\exp (10000 \cdot(e-1))}{e^{10000 e}}=e^{-10000}
$$

(c) $\mathbb{P}(Y \geq 27182) \geq \mathbb{P}(Y=27182)=e^{-10000} \frac{10000^{27182}}{27182!}$.

Now we crudely replace 27182 ! by $27182^{27182} e^{-27182}$, so $e^{-10000} \frac{10000^{27182}}{27182!}$ is crudely replaced by

$$
e^{-10000} \frac{10000^{27182}}{27182^{27182} e^{-27182}} \stackrel{(*)}{=} e^{-10000} \frac{10000^{27182}}{10000^{27182} \cdot e^{27182} e^{-27182}}=e^{-10000}
$$

where in $(*)$ we also replaced 21782 by $10000 \cdot e$. Of course this calculation was not entirely rigorous: in order to make it rigorous, we can use more precise versions of Stirling's formula.
(d) We see from the upper bound of (b) and (non-rigorous) lower bound of (c) that it is OK to replace $\log _{10}(\mathbb{P}(Y \geq 2718))$ by $\log _{10}\left(e^{-10000}\right)=-10000 \cdot \log _{10}(e) \approx-4343$.
Thus the number of zero digits before the first non-zero digit in the decimal expansion of the probability $\mathbb{P}(Y \geq 27182)$ is roughly 4343 .

Remark: This exercise can be viewed as a large deviation theorem for the sum of i.i.d. random variables. If X_{1}, X_{2}, \ldots are i.i.d. with $\operatorname{POI}(\mu)$ distribution and $S_{n}=X_{1}+\cdots+X_{n}$, then $S_{n} \sim \operatorname{POI}(n \mu)$. So what we have just proved is a special case of Cramér's theorem, which implies that for any $x \geq \mu$ we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \ln \left(\frac{S_{n}}{n} \geq x\right)=-I(x)
$$

where $I(x)$ was calculated in part (a) of the exercise. What we estimated in parts (b) and (c) amounts to the case $\mu=1, n=10000$ and $x=e$.
3. Laplace's principle. Let $-\infty \leq a<b \leq+\infty$ and let $J:(a, b) \rightarrow \mathbb{R}$ denote a continuous function. Let us also assume that there is $x^{*} \in(a, b)$ for which $J\left(x^{*}\right)=\min _{x \in(a, b)} J(x)$ and that $\int_{a}^{b} e^{-J(x)} \mathrm{d} x<+\infty$. Prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}-\frac{1}{n} \ln \left(\int_{a}^{b} e^{-n J(x)} \mathrm{d} x\right)=J\left(x^{*}\right) \tag{1}
\end{equation*}
$$

Hint: Prove the liminf bound and the limsup bound separately.
Solution: Let us denote

$$
\alpha=J\left(x^{*}\right)=\min _{x \in(a, b)} J(x) .
$$

We have

$$
e^{-n J(x)} \leq e^{-(n-1) \alpha} e^{-J(x)}, \quad x \in(a, b),
$$

thus

$$
\ln \left(\int_{a}^{b} e^{-n J(x)} \mathrm{d} x\right) \leq \ln \left(e^{-(n-1) \alpha} \int_{a}^{b} e^{-J(x)} \mathrm{d} x\right)=-(n-1) \alpha+\ln \left(\int_{a}^{b} e^{-J(x)} \mathrm{d} x\right)
$$

thus

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{1}{n} \ln \left(\int_{a}^{b} e^{-n J(x)} \mathrm{d} x\right) \leq \lim _{n \rightarrow \infty} \frac{1}{n}\left(-(n-1) \alpha+\ln \left(\int_{a}^{b} e^{-J(x)} \mathrm{d} x\right)\right)=-\alpha \tag{2}
\end{equation*}
$$

Now we want to bound the integral in the other direction. We will show that for any $\varepsilon>0$ we have

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{1}{n} \ln \left(\int_{a}^{b} e^{-n J(x)} \mathrm{d} x\right) \geq-(\alpha+\varepsilon) \tag{3}
\end{equation*}
$$

Note that the fact that (3) holds for any $\varepsilon>0$, together with (2), implies (1). It remains to show (3).
Let us fix $\varepsilon>0$. Taking into account that J is continuous, we can find $\delta>0$ such that for any $x \in\left[x^{*}-\delta, x^{*}+\delta\right]$ we have $J(x) \leq \alpha+\varepsilon$. Therefore we have

$$
\int_{a}^{b} e^{-n J(x)} \mathrm{d} x \geq \int_{x^{*}-\delta}^{x^{*}+\delta} e^{-n J(x)} \mathrm{d} x \geq \int_{x^{*}-\delta}^{x^{*}+\delta} e^{-n(\alpha+\varepsilon)} \mathrm{d} x=2 \delta e^{-n(\alpha+\varepsilon)}
$$

therefore

$$
\liminf _{n \rightarrow \infty} \frac{1}{n} \ln \left(\int_{a}^{b} e^{-n J(x)} \mathrm{d} x\right) \geq \lim _{n \rightarrow \infty} \frac{1}{n} \ln \left(2 \delta e^{-n(\alpha+\varepsilon)}\right)=-(\alpha+\varepsilon)
$$

This proves (3).

