Limit/large dev. thms. HW assignment 1. Due Wednesday, Feb. 21 at 12.15am

Note: Each of the 3 questions is worth 10 marks. Write your name and Neptun code on each piece of paper that you submit. Separate the solutions of different exercises with a horizontal line. Highlight the final answer. If you submit your homework electronically, pdf format is preferred.

1. (a) Express the logarithmic moment generating function (see page 7 of scanned lecture notes) of $a X+b$ in terms of the logarithmic moment generating function of X.
(b) Let X and Y denote independent random variables. Express the logarithmic moment generating function of $X+Y$ in terms of the logarithmic moment generating functions of X and Y.
(c) Let X_{1}, X_{2}, \ldots denote i.i.d. random variables and let N denote a non-negative integer-valued random variable, which is independent from X_{1}, X_{2}, \ldots Let

$$
Y=X_{1}+\ldots X_{N} .
$$

Denote by \widehat{I} the log. mom. gen. function of X_{i} and denote by \widehat{J} the log. mom. gen. function of N. Show that the log. mom. gen. function of Y is $\widehat{J} \circ \widehat{I}$.
2. Let $Y \sim \operatorname{POI}(10000)$ (Poisson distribution with parameter 10000). The goal of this exercise is to estimate the number of zero digits (after the decimal point) before the first non-zero digit in the decimal expansion of the probability $\mathbb{P}(Y \geq 27182)$. Note: $27182 \approx e \cdot 10^{4}$.

You will give an upper bound and a lower bound using different methods.
(a) Calculate the logarithmic moment generating function $\widehat{I}(\lambda)$ of the $\operatorname{POI}(\mu)$ distribution (see page 7 of the scanned lecture notes) and calculate its Legendre transform $I(x)$ (page 9 of scanned).
(b) In order to give an upper bound on $\mathbb{P}(Y \geq 27182)$, use the exponential Chebyshev's inequality (i.e., the method that we used on the top of page 8 of the scanned lecture notes).
(c) In order to give a lower bound on $\mathbb{P}(Y \geq 27182)$, estimate $\mathbb{P}(Y=27182)$ using the crude version of Stirling's formula (page 3 of scanned).
(d) Based on the above calculations, what is the approximate number of zero digits (after the decimal point) before the first non-zero digit in the decimal expansion of the probability $\mathbb{P}(Y \geq 27182)$?
3. Laplace's principle. Let $-\infty \leq a<b \leq+\infty$ and let $J:(a, b) \rightarrow \mathbb{R}$ denote a continuous function. Let us also assume that there is $x^{*} \in(a, b)$ for which $J\left(x^{*}\right)=\min _{x \in(a, b)} J(x)$ and that $\int_{a}^{b} e^{-J(x)} \mathrm{d} x<+\infty$. Prove that

$$
\lim _{n \rightarrow \infty}-\frac{1}{n} \ln \left(\int_{a}^{b} e^{-n J(x)} \mathrm{d} x\right)=J\left(x^{*}\right)
$$

Hint: Prove the liminf bound and the limsup bound separately. Also, follow the advice of Terry Tao and „give yourself an epsilon of room": it is enough to show that for any $\varepsilon>0$ we have

$$
\liminf _{n \rightarrow \infty} \frac{1}{n} \ln \left(\int_{a}^{b} e^{-n J(x)} \mathrm{d} x\right) \geq-J\left(x^{*}\right)-\varepsilon, \quad \limsup _{n \rightarrow \infty} \frac{1}{n} \ln \left(\int_{a}^{b} e^{-n J(x)} \mathrm{d} x\right) \leq-J\left(x^{*}\right)+\varepsilon .
$$

