© 1947 The University of Chicago Press
The Works of the Mind
Edited by Robert B. Heywood
 

The Mathematician

by John von Neumann

        A discussion of the nature of intellectual work is a difficult task in any field, even in fields which are not so far removed from the central area of our common human intellectual effort as mathematics still is. A discussion of the nature of any intellectual effort is difficult per se -- at any rate, more difficult than the mere exercise of that particular intellectual effort. It is harder to understand the mechanism of an airplane, and the theories of the forces which lift and which propel it, than merely to ride in it, to be elevated and transported by it -- or even to steer it. It is exceptional that one should be able to acquire the understanding of a process without having previously acquired a deep familiarity with running it, with using it, before one has assimilated it in an instinctive and empirical way.
        Thus any discussion of the nature of intellectual effort in any field is difficult, unless it presupposes an easy, routine familiarity with that field. In mathematics this limitation becomes very severe, if the discussion is to be kept on a non-mathematical plane. The discussion will then necessarily show some very bad features; points which are made can never be properly documented, and a certain over-all superficiality of the discussion becomes unavoidable.
        I am very much aware of these shortcomings in what I am going to say, and I apologize in advance. Besides, the views which I am going to express are probably not wholly shared by many other mathematicians -- you will get one man's no-too-well systematized impressions and interpretations -- and I can give you only very little help in deciding how much they are to the point.
        In spite of all these hedges, however, I must admit that it is an interesting and challenging task to make the attempt and to talk to you about the nature of intellectual effort in mathematics. I only hope that I will not fail too badly.
        The most vitally characteristic fact about mathematics is, in my opinion, its quite peculiar relationship to the natural sciences, or, more generally to any science which interprets experience on a higher than purely descriptive level.
        Most people, mathematicians and others, will agree that mathematics is not an empirical science, or at least that it is practiced in a manner which differs in several decisive respects from the techniques of the empirical sciences. And, yet, its development is very closely linked with the natural sciences. One of its main branches, geometry, actually started as a natural, empirical science. Some of the best inspirations of modern mathematics (I believe, the best ones) clearly originated in the natural sciences. The methods of mathematics pervade and dominate the "theoretical" divisions of the natural sciences. In modern empirical sciences it has become more and more a major criterion of success whether they have become accessible to the mathematical method or to the near-mathematical methods of physics. Indeed, throughout the natural sciences an unbroken chain of successive pseudomorphoses, all of them pressing toward mathematics, and almost identified with the idea of scientific progress, has become more and more evident. Biology becomes increasingly pervaded by chemistry and physics, chemistry by experimental and theoretical physics, and physics by very mathematical forms of theoretical physics.

. . . . . .

        It is difficult to overestimate the significance of these events. In the third decade of the twentieth century two mathematicians -- both of them of the first magnitude, and as deeply and fully conscious of what mathematics is, or is for, or is about, as anybody could be -- actually proposed that the concept of mathematical rigor, of what constitutes an exact proof, should be changed! The developments which followed are equally worth noting.
        1. Only very few mathematicians were willing to accept the new, exigent standards for their own daily use. Very many, however, admitted that Weyl and Brouwer were prima facie right, but they themselves continued to trespass, that is, to do their own mathematics in the old, "easy" fashion -- probably in the hope that somebody else, at some other time, might find the answer to the intuitionistic critique and thereby justify them a posteriori.
        2. Hilbert came forward with the following ingenious idea to justify "classical" (i.e., pre-intuitionistic) mathematics: Even in the intuitionistic system it is possible to give a rigorous account of how classical mathematics operate, that is, one can describe how the classical system works, although one cannot justify its workings. It might therefore be possible to demonstrate intuitionistically that classical procedures can never lead into contradictions -- into conflicts with each other. It was clear that such a proof would be very difficult, but there were certain indications how it might be attempted. Had this scheme worked, it would have provided a most remarkable justification of classical mathematics on the basic of the opposing intuitionistic system itself! At least, this interpretation would have been legitimate in a system of the philosophy of mathematics which most mathematicians were willing to accept.
        After about a decade of attempts to carry out this program, Godel produced a most remarkable result. This result cannot be stated absolutely precisely without several clauses and caveats which are too technical to be formulated here. Its essential import, however, was this: If a system of mathematics does not lead into contradiction, then this fact cannot be demonstrated with the procedures of that system. Godel's proof satisfied the strictest criterion of mathematical rigor -- the intuitionistic one. Its influence on Hilbert's program is somewhat controversial, for reasons which again are too technical for this occasion. My personal opinion, which is shared by many others, is, that Godel has shown that Hilbert's program is essentially hopeless.
        4. The main hope of a justification of classical mathematics -- in the sense of Hilbert or of Brouwer and Weyl -- being gone, most mathematicians decided to use that system anyway. After all, classical mathematics was producing results which were both elegant and useful, and, even though one could never again be absolutely certain of its reliability, it stood on at least as sound a foundation as, for example, the existence of the electron. Hence, if one was willing to accept the sciences, one might as well accept the classical system of mathematics. Such views turned out to be acceptable even to some of the original protagonists of the intuitionistic system. At present the controversy about the "foundations" is certainly not closed, but it seems most unlikely that the classical system should be abandoned by any but a small minority.
        I have told the story of this controversy in such detail, because I think that it constitutes the best caution against taking the immovable rigor of mathematics too much for granted. This happened in our own lifetime, and I know myself how humiliatingly easily my own views regarding the absolute mathematical truth changed during this episode, and how they changed three times in succession!