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Abstract

Chaotic and ergodic properties are discussed in this paper for various subclasses
of cylindric billiards. Common feature of the studied systems is that they satisfy
a natural necessary condition for ergodicity and hyperbolicity, the so called transi-
tivity condition. Relation of our discussion to former results on hard ball systems
is twofold. On the one hand, by slight adaptation of the proofs we may discuss
hyperbolic and ergodic properties of 3 or 4 particles with (possibly restricted) hard
ball interactions in any dimensions. On the other hand a key tool in our investi-
gations is a kind of connected path formula for cylindric billiards, which, together
with the conservation of momenta, gives back, when applied to the special case of
Hard Ball Systems, the classical Connected Path Formula.
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1 Introduction

One of the most interesting open questions of statistical physics and dynamical systems
theory is the so-called Boltzmann-Sinai Ergodic hypothesis, i.e. the conjecture that Hard
Ball Systems in physical dimensions are ergodic (as to the history of this conjecture see
[22]). In addition to its physical relevance the question is interesting as it is highly non-
trivial from the mathematical point of view. Nevertheless, there is an increasing belief
in mathematical physics communities that the proof is within reach. Thus a natural
question is the following: what could be a suitable category of dynamical systems con-
taining all hard ball systems for which transparent necessary and sufficient conditions for
ergodicity can be proven?

Dynamical properties of hard ball systems are mainly characterized by the fact that
they belong to the category of semi-dispersive billiards. Nevertheless, semi-dispersive
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billiards in their full generality may show a too extreme variety of dynamical behaviour
to guess the conditions for ergodicity. It has turned out that one possible choice for
the systems to answer the question above is the class of cylindric billiards. (This class
of dynamical systems was introduced in [20]; as to conjectures related to its ergodic-
hyperbolic properties see [22], [19] or conjecture 2.1 in the present paper.)

The purpose of our study is to prove ergodicity for cylindric billiards with a low
number of scatterers (or, more precisely, with cylinders at most a low number of which
may have generator subspaces with nontrivial intersection, see Theorem 2.4). For some
systems (Theorem 2.5) instead of ergodicity only the weaker hyperbolic/chaotic property
is proven (from which by [6] it follows that there are at most a countable number of ergodic
components, on each of which the dynamics possesses the K- and the B-properties).
The most difficult steps of the proofs (from the geometric-algebraic considerations) are
discussed by the help of a method for the calculation of neutral subspaces (Lemma 2.7)
which can be viewed as an analogue of the Connected Path Formula for Hard Ball Systems
([13]) in this cylindric billiard setting.

The paper is organized as follows. In Section 2 we summarize the most important
prerequisites, state the results and make some general remarks on the proofs. The proof
of the above mentioned Lemma 2.7 is also presented here (subsection 2.3). In Section 3
ergodicity and hyperbolicity is proven for cylindric billiards with pairwise transversal
generator subspaces (Theorem 2.4). In Section 4 we show hyperbolicity for billiards with
three cylinders (Theorem 2.5). The sections consist of further subsections according to
the steps of the proofs. In the Appendix we summarize how our results are applicable
to some particle systems with hard ball interactions (together with some further simple
generalizations).

2 Prerequisites and general observations

2.1 Definition of the dynamical system and summary of results

The subject of our study, the category of cylindric billiards is a simple subclass of semi-
dispersive billiards — as to the notions in connection with these systems see [8]. In our
case the configuration space of the billiard is defined by cutting out a finite number
of cylindric regions from the d-dimensional unit torus, i.e. @ = T4\ (CL U ---U Cy).
For the precise definition of the cylinders we need three data for each C;. We fix A;, a
subspace of the d-dimensional Euclidean space RY, the so-called generator subspace of
the cylinder. A; should be a so-called lattice-subspace to get a properly defined cylinder
on T? after factorization ([19]). We assume dim(L;) > 2, where L; = A} is the notation
for the base subspace, the orthogonal complement of A;. The base, B; C L; is a convex,
compact domain, for which, to ensure semi-dispersivity, the C?-smooth boundary 0B; is
assumed to have everywhere positive definite second fundamental form. Furthermore a
translational vector ¢; € RY is given to place our cylinder in T¢. By the help of these



data our cylinders are defined as:
Ci:={a+1+t;:a€ Ayl € B}/Z% (2.1)

To avoid possible complications we assume that: (i) the domain B; does not contain
any pair of points congruent modulo Z9; (ii) the interior of the configuration space
Q =TI\ (C,U---UC}) is connected.

It is time to give the definition of our dynamical system (M,S®,u). Our 2d — 1-
dimensional phase space is the unit tangent bundle of @, i.e. M = Q x S9! (here S9-1
is the d — 1-dimensional unit sphere). The dynamics S’z for a phase point z € M is
understood in continuous time and defined by uniform motion inside the domain and
specular reflections at the boundary (the cylinders). Finally, p is, as usual, the Liouville-
measure (i.e. dy = constdgdv), which is invariant for the flow. For future convenience
we fix here some more notation. A finite trajectory segment, S!*%z, is the collection of
points S*z on the trajectory of z for which a < ¢ < b. For any phase point z = (¢,v) €
Q x S9! = M the natural projections are defined as p(z) = v and 7(z) = ¢. By a
non-trivial sub-billiard of our cylindric billiard we mean the billiard dynamical system
we get by cutting out only some of the cylinders Cj.

Example. Consider N ball particles with finite masses and radii moving on the
v-dimensional torus. To define dynamics, assume furthermore that a so called collision
graph (or graph of interactions), I' = (V,€) is given. Here V is the finite set of the
N particles. Pairs contained among the edges £ do interact via hard ball collisions,
while non-connected pairs do not interact at all (see also [17]); otherwise the dynamics
is governed by free motion. In the case of a complete collision graph we get the so
deeply studied Hard Ball Systems. This dynamical system (restricted to the constant
value submanifold of the trivial integrals of motion) is equivalent to a cylindric billiard
with configuration space in TN""*. The cylinders we cut out correspond to the allowed
interactions (in case the configurational domain ) is not connected — i.e. the radii of the
balls are not small enough — we may view the finitely many connected components of () as
configurational domains for independent billiard systems). To get a detailed description
of this isomorphism see [18] and references therein. Thus cylindric billiards are indeed
generalizations of all possible Hamiltonian systems defined on tori with restricted hard
ball interactions. As to the relevance of our results to this example see the Appendix.

Important Remark. If we want to describe Hard Ball Systems as cylindric billiards
we have to be a bit more precise. Instead of R4/Z? we should allow for the more general
T9 = RY/L at the definition of the configurational domain. (Here L is a lattice in the
Euclidean plane R9). Throughout the definition of the dynamical system Z9 should be
replaced by the lattice £ (e.g. formula (2.1)).

The results of this paper are formulated and proved for cylindric billiards on R4/Z9.
Nevertheless, it is important to note that for a large class of general lattices £ the proofs
go through without modification. More precisely, the dynamical-topological considera-
tions (subsections 3.2 and 4.2) work for exactly those lattices £ that have the following



property: for any subspace A which is a lattice subspace with respect to the lattice L,
the orthogonal complement L = At should be a lattice subspace as well. (for a detailed
analysis and equivalent formulations of this property see [14]).

As to particle systems with hard ball interactions the corresponding cylindric billiard is
defined with a lattice of the above type whenever all mass ratios of the ball particles are
rational. Thus the results of the paper are directly applicable to (the suitable subclasses
of) Hard Ball Systems whenever the mass ratios are rational. However, in case of a
cylindric billiard equivalent to a system with hard ball interactions, it is possible to use
an argument at the dynamical-topological considerations (see [18, 13]) which is much
different from the proofs of Propositions 3.3 and 4.2 in this paper and which does not
rely on the properties of £. Thus the present results work even if there are irrational
mass ratios, as the rest of the proof (subsections 3.1 and 4.1) does not use any property
of £. (A much more detailed study of these and related issues is to be found in [14]).

The two most important phenomena characterizing the dynamics in semi-dispersive
billiards is on the one hand that they enjoy some hyperbolicity (in fact, there exists an
invariant, but not necessarily strictly invariant cone field, cf. [11]), and on the other hand
that singularities are present. As to the former one, among the most interesting questions
of the theory is whether hyperbolicity is strong enough to ensure that our dynamical
system is (i) completely hyperbolic, i.e. with respect to the invariant measure p almost
everywhere all relevant Lyapunov-exponents of the flow are nonzero (such dynamical
systems are sometimes referred to as chaotic); (ii) ergodic with respect to the measure
1.

There are two possible types of singularities in billiards. A collision at the boundary
point (q,v) € OM is said to be multiple if at least two smooth pieces of the boundary
0Q) meet at ¢, and is tangential if the velocity v is tangential to 0Q) at ¢q. At tangential
reflection points the dynamics is continuous, though not smooth. However, at a multiple
reflection point the dynamics is not even continuous. Thus the future semi-trajectory (or
the outgoing velocity) is not well-defined for a multiple reflection point — for such points
two trajectory branches can be considered as the limits of the smooth dynamics. We shall
denote the set of all singular reflection points (belonging to any of the above two types,
in case of multiple collision supplied with outgoing velocity v*) by SR™*.

Before introducing some further notation it is time to mention some key prerequisites.
As it is described in [1], it is an important feature of generic semi-dispersive billiards
that there are no finite trajectory segments with an infinite number of collisions on
them (analogous statements have first appeared in [24, 4]). On the other hand, it is
possible that some trivial subsets are present for the points of which the trajectories do
not collide at all. Such points lie on a finite number of one codimensional submanifolds
(for details see subsection 3.2 in this paper and, especially, the Appendix of [21]). The
complementary set, M#, contains only such typical trajectories for which infinitely many
collisions are present — the following characterization is related to this set. M* C M#
is the set of phase points whose trajectories contain infinitely many collisions such that
at most one is singular among them. M® C M* is the set of regular phase points — i.e.



whose entire trajectory (with infinitely many collisions on it) avoids SR™; for the points
in M' = M*\ M° there is exactly one singular reflection. To measure the size of these
sets we use the small inductive topological dimension (for details see [23, 5]). It is not
hard to see that SR™ is a codimension 1 subset of M, and, as a consequence, M?° is of
full measure in M, while M# \ M* is of codimension 2 (cf. [8]).

The main philosophy of the study of semi-dispersive billiards has always been the
principle that in some sense hyperbolic behaviour is stronger than the effect of singular-
ittes. According to this philosophy we expect that dynamics in a cylindric billiard is
chaotic and ergodic unless some geometric degeneracy of the cylinders is present. This
expectation is formulated precisely in the conjecture below, for which we need some more
preparation.

For any cylinder C; let G; be the group of all orientation preserving orthogonal trans-
formations in RY that leave the points of the generator subspace A; fixed. Denote
furthermore by G the group of transformations algebraically generated by all such groups
Gi -1 =1,...,k. Observe that the group G, being a subgroup of the special orthogonal
group SO(d), has a natural action on S9! (and thus on R9 as well).

Conjecture 2.1 The cylindric billiard is completely hyperbolic and moreover ergodic if
and only if the group action of G is transitive on the unit velocity sphere S9=1. From
here on we refer to the transitivity of the action of G as to the transitivity condition on
our cylinders.

The remarks below are discussed in detail in [19].

Remark 2.2 For the case of restricted hard ball interactions (see the example above)
the transitivity condition for the isomorphic cylindric billiard s satisfied if and only if
the collision graph is connected. Thus if one were able to prove the above conjecture one
would immediately get ergodicity and hyperbolicity for a large class of particle systems
with hard ball interactions, including the so much discussed Hard Ball System case.

Remark 2.3 The equivalence of the following three conditions on the cylindric billiard
is demonstrated in [19)]:

(i) The action of G is transitive on S3~1

(ii) The action of G is irreducible on RY

(11i) The system of base subspaces Ly, - -, Ly has the Orthogonal Non-Splitting Property,
i.e. there is no orthogonal splitting R = K1 & Ky for which dim(K;) > 0 and which has
the property that for any i =1,---,k either L; C Ky or L; C Ko.

As a consequence of remark 2.3 we immediately see that the transitivity condition is
necessary for both ergodicity and hyperbolicity. Indeed, let us suppose that the transi-
tivity condition does not hold. This in turn implies by virtue of (iii) above that there
exists a nontrivial orthogonal splitting R = K; @ K,. Then it is easy to see that for
any phase point (¢,v) € M the two quantities || Px,(v)|| remain constant under the time
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evolution, thus nontrivial integrals of motion are present (here and from here on Pk (v)
stands for the orthogonal projection of the vector v onto the subspace K, while ||z]| is
the absolute value of the vector z).

In contrast to the necessity of the condition, proving that the transitivity of the action
is indeed sufficient for both ergodicity and hyperbolicity is an extremely nontrivial task.
(By remark 2.2, proving conjecture 2.1 in its full generality would imply the ergodicity
and the hyperbolicity of Hard Ball Systems, a problem that has been a subject of active
research for the last couple of decades.) The results in this paper are proofs of the
conjecture for some subclasses of cylindric billiards. In the rest of this subsection we give
a summary of results.

The simplest possible class of cylindric billiards one could imagine would be the case

A; = {0} for all the cylinders C;. For such systems the scatterers are strictly convex,
the billiard is dispersive, thus ergodicity and hyperbolicity follow as consequences of the
local hyperbolic and ergodic theorems (see [8] or [2]). On the other hand the transitivity
condition is naturally satisfied.
To get more complicated cylindric billiards we must allow for ‘thicker’ generator sub-
spaces. The more cylinders may have generator subspaces with nontrivial intersection,
the more difficult it is to handle the system. Theorem 2.4 below proves the desired prop-
erties for the simplest possible nontrivial class, while Theorem 2.5 gives the hyperbolicity
of some more 'complicated’ systems. In a sense the complexity of the increasing number
of generator subspaces with nontrivial intersection corresponds to the increasing num-
ber of particles in Hard Ball Systems. Indeed, the system of two balls on the torus is
equivalent to a dispersive billiard (cf. [8]); while, as it is discussed in the remarks below,
the conditions of Theorems 2.4 and 2.5 are valid for Hamiltonian systems of 3 or 4 ball
particles, respectively.

Theorem 2.4 Let us consider a cylindric billiard with an arbitrary number of scatterers
Cy, -, Cy

(i) which satisfy the transitivity condition;

(it) for which it is true that for any two cylinders C;,C; (i # j) the corresponding
generator subspaces are transversal: A; N A; = {0}.

The dynamical system is ergodic and hyperbolic. (Moreover, the dynamics is K-mizing
([6]) and possesses the Bernoulli property ([3, 12])).

Remarks. This result is a natural generalization of the one discussed in [16]: the
ergodicity and hyperbolicity of a billiard with two cylinders was demonstrated there,
with one additional assumption on the scatterers besides our (i)-(ii).

The result of Theorem 2.4 implies the ergodicity of three particles, both for the classical
case of three hard balls with positive radii and for the case when two of the three particles
interact only with the third particle and not with each other as they have zero radius.

Theorem 2.5 Let us consider a billiard with three cylinders which satisfy the transitivity
condition.
The dynamical system s hyperbolic.



Remarks. As for a particle system that belongs to this class one may consider four

particles only one of which has nonzero radius (in this model the particles with zero
radius do not interact; we have three pair interactions, i.e. three cylinders).
It is a natural question what one can do if all the four particles have nonzero radius. A
slight adaptation of our methods gives hyperbolicity for this case as well (as it is demon-
strated in the Appendix). Although for four hard balls even ergodicity has been proven
([10]), the new results are interesting as they are valid without dimensional restriction,
i.e. for two dimensional disks as well.

One more remark is in order. It may happen that two cylinders are parallel, i.e. for
a pair 1 # j A; = A;. In such a case collisions with C; and C; have exactly the same
effect on the dynamics, thus the two cylinders can be considered as identical. We have
formulated the theorems above and will go on with the proofs below by assuming that
such a parallelity does not occur. Nevertheless the results remain trivially true if we state
the conditions on such identified classes of parallel cylinders rather than on the cylinders
themselves.

2.2 Basic strategy of the proofs

In this subsection some 'traditional’ concepts are summarized that play an essential role
in the theory of semi-dispersive billiards. Our discussion is very brief, for more details
see the literature, especially [19, 8, 10]. Let us consider a nonsingular finite trajectory
segment S%¥z, where a < 0 < b and a, b, 0 are not moments of collision.

No(S[2blz), the neutral subspace at time 0 for the segment S[®%lz is defined as follows:

No(81¥z) .= { weRY:3(6 > 0)s.t.Va € (—5,6)
p(5*(q(z) + aw,v(x))) = p(S*z)&
p(8°(a(2) + aw,v(z))) = p(S")}.

Observe that v(x) € Ny(SI*Plz) is always true, the neutral subspace is at least 1 dimen-
sional. Neutral subspaces at time moments different from 0 are defined by N;(Sl*tlz) :=
No(Sle=tb=t(Stz)), thus they are naturally isomorphic to the one at 0.

The following notion is one of the most important concepts in the theory of semi-
dispersive billiards. The non-singular trajectory segment Sz is sufficient if for some
(and in that case for any) t € [a,b] :  dim(N;(S14Yz)) = 1. A point x € M is said to be
sufficient if its entire trajectory S(=°>*°)z contains a finite sufficient segment. Singular
points are treated by the help of trajectory branches (see [8]): a point z € M (this
precisely means that the entire trajectory contains one singular reflection) is sufficient if
both of its trajectory branches are sufficient.

Sufficiency has a picturesque meaning; roughly speaking a trajectory segment is suffi-
cient if it has encountered all degrees of freedom. Nevertheless the concept is important
as very strong theorems hold in open neighborhoods of sufficient points (on more general
formulations of sufficiency and on the local ergodicity theorem see [11, 2, 8] ).

Local Hyperbolicity Theorem. Every sufficient phase point + € M has an open
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neighborhood z € U C M, such that for p a.e. y € U the relevant Lyapunov exponents
of the flow are nonzero.

Local Ergodicity Theorem or Fundamental Theorem of Semi-Dispersive Bil-
liards. Assume that some geometric conditions are true for the singularities of our
semi-dispersive billiard (most importantly the Chernov-Sinai Ansatz holds, see e.g. [8]).
Then every sufficient phase point © € M has an open neighborhood x € U C M which
belongs to one ergodic component.

Now let us examine the trajectory segment Sl¥z from another point of view. We
denote with 755 a < 74 < --- < 7, < b the moments of collision on the segment, i.e.
for any j = 1,...,n it is true that Sz = (g;,v;) € OM. Let us assume ¢; € 9(Cy;),
i.e. at time 7; reflection occurs at the cylinder Cy;). The finite sequence of symbols
(1(1),---,1(n)) is called the symbolic collision sequence of the trajectory segment.

A finite trajectory segment is said to be connected if it holds for the corresponding
symbolic collision sequence that the system of subspaces (A1), - -, Ayn)) is transitive in
the sense as it is formulated at conjecture 2.1.

A finite trajectory segment is said to be rich if the corresponding symbolic collision
sequence contains ’enough collisions’ in some combinatorical sense. Formulating the
concept of richness so vaguely is done by purpose: the useful notion of richness depends
and has always depended on the specific model one considers. Furthermore, the useful
formulation also depends on what one wants to prove; for proving ergodicity definitely
a stronger notion of richness is needed than for showing hyperbolicity. Nevertheless, the
concepts of connectedness and richness should be related in a way. With any notion of
richness being used we call a phase point rich/connected if it has a rich/connected finite
trajectory segment and we call it poor if it is not rich.

It is time to make a general remark on a type of trivially sufficient (and, simultaneously,
rich) sequences.

Remark 2.6 Let us assume that among the cylinders there exists a C; for which the
generator space is trivial, i.e. A; = {0}. It is easy to see that any finite trajectory
segment for which a collision with C; occurs is sufficient. Such segments will always be
considered to be rich. In our specific examples we shall not take care of these trivially
rich sequences as they always have very good hyperbolic properties.

Dynamics of a phase point in a finite time interval is mainly characterized by its
symbolic collision sequence. It may happen, however, that trajectories with different
collision sequences show the same dynamical behaviour. For example two consecutive
collisions with the same cylinder have the same effect as if only one collision occurred. An
1sland is a maximal subsequence of a collision sequence consisting of consecutive collisions
with the same cylinder (see [16, 9]). Collision sequences with the same island structure
may be treated as equivalent. We shall turn back to the question of equivalence and to
the correct formulation of richness at the end of subsection 2.3.

Following tradition (e.g. [16, 10]) proving either hyperbolicity or ergodicity is done
in several steps. For the proof of hyperbolicity one needs



(H1) Geometric-algebraic considerations to prove that p-a.e. rich point in the phase space
is sufficient; and

(H2) Dynamical-topological considerations to prove that p-a.e. point of the phase space
is rich.

We get sufficiency p-almost everywhere if (H1) and (H2) hold simultaneously, this to-
gether with the above mentioned local hyperbolicity theorem implies the hyperbolicity
of the dynamics.

Ergodicity is a more difficult task as one has to ensure that the local ergodic com-
ponents indeed do make up one ergodic component (i.e. they are not separated by
codimension 1 subsets). It has to be shown that the ’exceptional sets’ are, besides being
of zero p-measure, slim subsets of the phase space (a subset is slim if it can be covered by
a countable union of closed zero measure sets of topological codimension 2, for a detailed
analysis see the recent review [23]). A further difficulty is that one has to consider the
singular orbits (they can be ignored in the proof of hyperbolicity as they form a zero
measure set (a set of codimension 1)). The steps of the proof of ergodicity are:

(E1) Geometric-algebraic considerations to prove that the set of points that are rich and
non-sufficient is slim;

(E2) Dynamical-topological considerations to prove that the set of poor (and, simultane-
ously, non-sufficient) points is slim; and

(E3) Considerations on the singularities of the system, including the verification of the
Chernov-Sinai Ansatz.

Putting parts (E1-E3) together implies, on the basis of the local ergodicity theorem, the
ergodicity of the billiard dynamics.

2.3 Calculation of neutral subspaces

In the study of various cylindrical billiards (especially hard ball systems, see e.g. [10, 18])
geometric-algebraic considerations are usually much more difficult than the rest of the
proof. This is true for our results as well — as the reader shall see from sections 3 and 4,
while dynamical-topological considerations are more or less easy adaptations of methods
discussed in the literature, some new ideas are needed in the geometric-algebraic part.
Our task in the geometric-algebraic part is approximately the following. Let us assume
a trajectory segment with one particular rich symbolic collision sequence is given (there
is always a finite number of symbolic collision sequences one has to study, depending
on the specific notion of richness we use for the model). If we knew how the neutral
subspace at a given (non-collision) time moment of the segment explicitly looks like, we
could conclude that the neutral subspace is one dimensional (i.e. sufficiency holds) unless
some degeneracy of the projections of velocity vectors at different time moments occurs.
This way non-sufficient phase points with a given rich collision sequence can be described
by some algebraic equations that characterize the above mentioned degeneracy. These
sets are, in general, algebraic varieties. For brevity, however, throughout the paper we
shall abuse the terminology and refer to them as submanifolds. In order to describe these



exceptional sets it is of key importance to find explicit methods for the calculation of
neutral subspaces of different collision sequences.

As to Hard Ball Systems, remarkable progress has been achieved related to this prob-
lem through the so called Connected Path Formula invented by N. Simdnyi (see [13]).
This formula however, which has been so powerfully used since its invention (see e.g.
[18, 13]), uses the properties of hard ball systems (the conservation of momenta), thus
it cannot be applied directly to the wider class of general cylindric billiards. In this
subsection some general observations on the calculation of neutral subspaces are made
which will be of further use in the rest of the paper playing the role of the connected path
formula. Actually, when applied to the isomorphic cylindric billiard in the case of particle
systems with hard ball interactions, our Lemma 2.7, together with the conservation of
momenta, gives back the classical Connected Path Formula.

From here on S[®%z is a fixed trajectory segment with collision sequence (I(1), ...I(n));
the moments of collision we denote by a < 7(z) < ... < 7,(z) < b, while ¢t € [a,b] is an
arbitrary non-collision time moment. v(t) stands for the velocity vector at time ¢ and
w(t) for an arbitrary fixed vector of the neutral subspace, also calculated at time ¢ (we
use the natural isomorphism of neutral subspaces at different time moments mentioned
in subsection 2.2). As before, Px(w) denotes the orthogonal projection of the vector w
onto the subspace K.

For all the collisions i = 1,...,n we define linear functionals o; : N;(S!*!z) s R, the
advances of the collisions (see e.g. [13]) as the unique linear extensions of the linear
functions o/ defined in an open neighborhood of the origin of N;(S*z):

H(w(t) == 7(x) — (ST Ty S'z).

«

Here Ty (x) = Tww(g,v) = (¢ + w(t),v) denotes the pure spatial translation by the
vector w(t). By the natural isomorphism of neutral subspaces the value of an advance
does not depend on the time moment when the neutral vector is calculated.
It is also easy to conclude (see e.g. [16]) that for any ¢ such that 7, ; < ¢ < 7; or
T <t < Tip1t
w(t) = @i, (v(2) + a (22)

where a € Ay(;) is an element of the generator subspace which (just like the value of the
advance for the neutral vector w, «;) does not depend on time.

Lemma 2.7 We use the notations introduced above, thus our collision sequence s
(1(1),...,1(n)), collision moments are denoted by 7;, the advances by oy, i = 1,...,n (more
precisely, the a;-s are the values of the advances for a fized neutral vector). Non-collision
time moments t; are fized between the consecutive collisions, T; < t; < T;jv1. Our aim s
to calculate the neutral subspace at time t,_1, i.e directly before the last collision. The
following equations are valid for any j = 1,...,(n — 1) and any neutral vector w(t,_1):

Prg(w(tn-1)) = (05 = aj1) Pry, (v(t5)) + - +
(On—g = 1) Pryy (0(tn-2)) + an1 Pry (v(tn-1)). - (2.3)
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N.B. For the projection of any such neutral vector onto the base subspace of the last
cylinder in the collision sequence by (2.2) it trivially holds:

Pryy (W(tn1)) = anPry,, (v(tn-1))-

Proof. For brevity we introduce the notation: P for Py, ., v" for v(t;) and w* for
w(t;). From (2.2) the following series of equations are straightforward:

,wz' . wi—l — B(wz) . H(wi—l) — aZP,(vz) _ a/iPi(’Ui_l).

We only need one more well-known observation for the proof; the dynamics of a velocity
vector is determined by specular reflections, thus while colliding with C; it’s projection
onto the generator subspace A; does not change:

PZ(’UZ) . Pi(,vi—l) — Ui . Ui_l.

Putting the above two equations together and projecting orthogonally onto any L;, j =
1,...,n we get: . . . .
Pj(w') = Pj(w'™") + ai(P;(v') — B (v'™1). (2.4)

On the other hand from (2.2) it trivially follows that

Pi(w’) = a;P;(v7).
This together with (2.4) summed over i = (j+1)...(n — 1) gives the telescopic expression
(2.3). O

The advantage of the Lemma is that in case our collision sequence is long enough (i.e.
Z?:_le(i) = R4Y), any neutral vector is determined by the values of the advances through
the simple equations (2.3).

The already mentioned equivalence of collision sequences is one more issue to be
discussed briefly before closing this subsection (an analogous discussion has already ap-
peared in [10], principle 4.1) . We say that two collision sequences are equivalent if they
can be transformed into each other by
(i) time direction change for the whole sequence, i.e. (I(1),...,l(n)) ~ (I(n),...,1(1));

(ii) doubling a collision with the same cylinder, i.e. (..,1,1,..) ~ (.., 1,..);

(iii) by the interchange of two consecutive collisions if the corresponding cylinders have
orthogonal base subspaces; i.e. (..,I,m,..) ~ (..,m,[,..) whenever L,, | L; holds.

As it will be clear from the considerations in subsections 3.1 and 4.1, these collision
sequences are indeed equivalent from the viewpoint of geometric-algebraic considerations.
The fact that the structure of neutral subspaces at the corresponding time moments (i.e.
in the cutting time moments, see below) is the same is a straightforward consequence of
the definitions and the equations above. The advantage of this notion is that it is enough
to consider only the shortest equivalent forms of all possible rich collision sequences.
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In the dynamical-topological part, however, one has to be more careful with the equiva-
lence of collision sequences. The following notion, suggested by N. Siményi ([15]), helped
a lot in a clearer formulation of the dynamical-topological considerations. In addition
to islands we introduce the concept of archipelago. An archipelago is a maximal subse-
quence (l1, ..., l,) of a symbolic collision sequence for which it is true that any two cylinders
present are either identical (Lyi) = Ly)) or orthogonal (L;; L Ly)). One more impor-
tant notion is that of a cutting time moment which we define as a non-collision time
moment, between two consecutive archipelagos. It is an important question whether it
is true that any collision sequence has a unique archipelago structure. (By archipelago
structure we mean the series of consecutive archipelagos with the cutting time moments
in between). As it will not be difficult to see, for the models discussed in sections 3 and 4,
this uniqueness indeed holds, which is a specific feature of these cylindric billiards. Given
this uniqueness it is straightforward that (modulo time direction change) two collision
sequences are equivalent if and only if they have the same archipelago structure.

Now we may turn back to the question of a suitable formulation of richness, which
should be invariant under equivalence transformations. (It is straightforward to see that
the concept of connectedness depends solely on the archipelago structure). For proving
hyperbolicity double connectedness is a possibly good notion of richness in general; i.e.
the trajectory segment is rich if there is a cutting time moment ¢, a < ¢ < b, such that
both segments Sz and Sl“*lz are connected (note, however Remark 2.6). In fact, this
is the notion of richness we use in section 4.

3 Theorem 2.4 — pairwise transversal generator sub-
spaces

The subject of this section is a cylindric billiard with scatterers Cfi, ..., Cx which, as it
is formulated in Theorem 2.4, in addition to transitivity condition have the property
A;NA; = {0} whenever i # j. For such a system, given any pair of orthogonal cylinders
L; 1L L;, one surely has: A; = L; and L; = A;. As a cosequence the archipelago structure
is unique for any collision sequence. There are two possible types of archipelagos: an
archipelago either contains one single island, or it is a maximal sequence of alternating
islands of two orthogonal cylinders.

For symbolic collision sequences we use the notation ¥ = (a,b,..), here the symbol a
denotes the cylinder C, with generator subspace A,. Lowercase Latin letters a,b,c, ..
denote the cylinders and the corresponding Greek letters «, 3, .. denote the advances
of the collisions, respectively. For vectors w of the neutral subspace and the velocity
vector v upper indices refer to the time moments, while lower indices indicate orthogonal
projections onto base subspaces. For instance v} is the orthogonal projection of the
velocity vector at time t, onto the subspace L, (nevertheless the symbol Py (v(ty))
already introduced in the previous section may be used as well for the same quantity).
The notation K, + K is used for the subspace of R® spanned by to given (not necessarily
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orthogonal) subspaces K; and K.

3.1 Geometric-Algebraic Considerations

Before going into details an easy but important observation can be made. Under the
conditions of Theorem 2.4 a trajectory segment is sufficient iff there are two consecutive
collisions with different cylinders (i.e. two consecutive islands) for which the advances
are equal. Indeed, let the two consecutive collisions be (a,b) and let us calculate the
neutral vector w in a time moment ¢ between the two collisions, where the velocity is v.
By (2.2):

Wq = O} Wp = QU

where « is the common advance. Now as A, N A, = {0}, the above equations completely
characterize the vector w. Thus w = awv, which is exactly sufficiency.

Proposition 3.1 Assume ¥ = (a,b,c) is an arbitrary collision sequence of three colli-
sions that has no shorter equivalent form (the possibility a = c is not excluded). For any
reqular phase point x € M° a bounded trajectory segment of which has collision sequence
Y there ezist an open neighborhood © € Uy and a submanifold N of M such that (i)
codim(N) > 1 and (i) Yy € Uy \ N is sufficient.

Proof. The strategy is the following. Let us assume we have a non-sufficient phase
point z fixed for which the collision sequence has the structure (a, b, ¢) described above.
We will show that z lies on a one-codimensional submanifold N. The advances (for
a fixed neutral vector) are a, 8 and +; furthermore arbitrary fixed non-collision time
moments directly before and after collision with b are denoted by ¢_ and ¢, , respectively.
According to the possible geometrical position of the cylinders we distinguish three cases.

Case 1. The base subspaces for the first two collisions are transversal and non-
orthogonal, thus L, N L, = {0} and L, [ Ly.

We examine a neutral vector w at time moment ¢,. By Lemma 2.7:

w, = (= B, + BuS; wy, = Bu;. (3.1)

Let us denote by J the linear mapping of RY onto itself which is evaluated as the sum
of the two orthogonal projections onto the subspaces L, and L; for any vector z, i.e.
Jz = z,+ 2. The transversality of the corresponding generator subspaces A, N A, = {0}
required for our model, which is equivalent to L, + L, = R?, ensures that J is indeed a
linear bijection. Summing the two equations in (3.1) and applying J~! we get:

w= v+ (a—B)J '(v,)

On the other hand it is clear from (2.2) that for any neutral vector directly before collision
with ¢: w —yvt € A, thus

B—7)v" +(a—B)J (v)) € A..
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This equation however implies that unless two consecutive advances are equal (which is
equivalent to sufficiency for our case, see the remark before proposition 3.1), one has:

FINER;ANA0: v +AJ 7 (v)) € A.. (3.2)

Let us now apply a purely configurational infinitesimal translation dg to the phase point
of the trajectory segment at time ¢,. Under the effect of all such translations, while
vT remains the same, the velocity at ¢_ may change from v~ to o~ (more precisely, the
velocity difference v~ — o~ moves on the surface of a dim(L;) dimensional sphere inside
L, that goes through the origin). Assume that the perturbed trajectory is not sufficient
either, i.e. (3.2) holds for o~ with some A € R. This implies:

J (A, =) € A..

Now observe that by L, N L, = {0} it is only true for vectors inside A, that their images
under J lie in L,. This together with the required transversality of generator subspaces
(A, N A, = {0}) and the bijectivity of J gives:

2y =, = v |0 (3.3)

We should distinguish two further subcases.

(i) L, N Ay = {0}. The points of N are described by formula (3.3). However, under
the effect of all perturbations dg the velocity difference projected onto L, (i.e. v, — ;)
moves on a surface of an ellipsoid in the space L,. Thus we get a contradiction with
(3.3), z lies on a submanifold N of codimension at least 1.
(ii) LyN Ay # {0}. Then by dynamics Py, (v™") = Pa,(v"), thus, as v remains unchanged

Prona, (v ) = Prana, (0). (3.4)

Now we shall see N = N U N® with both N and N® one-codimensional. For the
points z € N let

PLaﬂAb (vi) = PLaﬂAb (U+) = O? (35)

this submanifold is clearly (at least) one-codimensional. On the submanifold N? we
assume that such a restriction of the velocity is not present. Then by (3.4) we see that
(3.3) can only hold if A = A, i.e. v; = ¥, (in fact, this is the formula that characterizes
the points of N®). Nevertheless v, can only remain unchanged under the effect of all
perturbations dq if L, L L;, something we excluded from case 1. As a perturbation
moves away from N® | it is definitely of codimension at least one.
Thus in case 1 it is indeed true that sufficiency may only fail locally on a submanifold N
for which codim(N) > 1.

Remarks. Observe that our argument does not use any assumptions on the geomet-
rical position of the cylinder C,, geometrical restriction is only put on the cylinders of
consecutive collisions a¢ and b, and not on b and c¢. E.g. the case L, L L. is also covered.
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If Ly N L. # {0}, the situation is even better. In addition to the characterization of non-
sufficient points described above, by (2.2) it is straightforward to see that non-equality
of the consecutive advances  and 7 (i.e. non-sufficiency) can only hold if

PLanC(U+) = 0 (36)

Thus for the submanifold N of non-sufficient points in fact codim(N) > 2 is valid, as
we can find two transversal submanifolds N; and N, such that N = N; N N, holds and
codim(N;) > 1 (directions in configurational and velocity space, just like two velocity
restrictions in orthogonal subspaces are always transversal).

Case 2. The subspaces L, and L; are not transversal, i.e. L, N L, # {0}.

Repeating the argument in the remarks after case 1 we get P nz,(v™) = 0 which
gives for the submanifold of non-sufficient points codim(N) > 1 readily. It is however
interesting to note that in many cases we automatically get codim(N) > 2:

(i) if LyN L. = {0} and L, £ L.; we are exactly in the situation discussed in the remarks
above, thus codim(N) > 2;

(ii) if LyNL. # {0}, we have N = N;N Ny, where N, is defined by (3.6) and P, (v™) =0
is valid for the points of N;. These two are transversal, as applying all possible purely
configurational translations dg at time ¢_, v~ does not change (so we remain on Ny). On
the other hand v;” moves on a surface of a sphere of full dimension in L, thus (3.6) does
not remain true for any such dq. We get codim(N) > 2.

(iii) for the case L, 1 L. we are satisfied with codim(N) > 1.

Case 3. The two consecutive base subspaces are orthogonal, L, | L;. Observe that,
from the viewpoint of Proposition 3.1, there is no need to consider this case separately,
as by time direction change it is equivalent to one of the cases 1 or 2 (orthogonality of a
and b together with b and ¢ cannot occur, in that case we would have a shorter equivalent
form). Nevertheless it is worth to get the explicit form of N as a condition on the velocity
at time ¢, to prepare the proof of Proposition 3.2.

Observe that by the assumed A, N A, = {0} the condition L, 1 L, means L, = A,
and L, = A,. In case L, N L. # {0} (if L, N L. # {0}, by equivalence, similarly) we get
N explicitly as (3.6). If no such intersection is present, then the cylinders Cy and C, are
transversal in a strong sense, i.e. L, N L. = {0}; A, N L. = {0} (this is the geometric
condition that was required from the two cylinders in [16]). It is easy to see that under
such geometrical conditions (dim(Ly) =)dim(A.) > 2. From here on the velocity vector
v and the neutral vectors w are always understood in time ¢,. By orthogonality (2.3)
gives a very simple form for any neutral vector:

W = QUg; Wy = Bup.
By a standard argument similar to the one used in case 1:
ANER,ANA0: v, + Ay € A.. (3.7)

This formula is characteristic for the set of nonsufficient points IV, for which codim(N) >
1. Indeed, let us assume that (3.7) holds for v and for any v which is parallel to (v + dv)
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for some dv € A, (we may assume v ¢ A., otherwise we get codimension 2 readily). Let
the corresponding constants in (3.7) be A and ), respectively. The condition on both
vectors implies:

(5\ — )\)’Ub + (5\ — 1)(5’1)[, € A,.

As we assumed A, N A, = {0} there is definitely a possible choice of dv € A, such that
0vp and v, are lineary independent. This — by the strong transversality mentioned above
— gives A = A = 1, and looking at (3.7) we get v € A, as a contradiction.
Thus we have seen codim(N) > 1 in all the three cases, the Proposition is proven. O
It is time to fix the notion of richness we want to use for our model. We say that a
trajectory segment is rich if its collision sequence contains
(i) either four consecutive archipelagos;
(ii) or three archipelagos at least one of which consists of more than one island.
(See, however Remark 2.6.) It is easy to see that such rich sequences, in any of their
shortest possible equivalent forms, contain a subsequence of at least four consecutive
islands (a, b, ¢, d) (with double occurrence of the same cylinder not excluded) such that
L, L Ly and L. 1 Ly does not hold simultaneously. Observe furthermore that double
connectedness of the collision sequence (already mentioned in subsection 2.3) would mean
for our model the presence of four consecutive archipelagos; thus the notion of richness
we use is weaker.

Proposition 3.2 Assume ¥ = (a,b,c,d) is (an above described subsequence of) an ar-
bitrary rich collision sequence. For any reqular phase point x € M° a bounded trajectory

segment of which has collision sequence X there exist an open neighborhood x € Uy and
a submanifold N of M such that (i) codim(N) > 2 and (i) Vy € Uy \ N is sufficient.

Proof. Now we shall think of x as a non-sufficient phase point with one particular
collision sequence 3, and show that x lies on the two-codimensional submanifold N. On
our collision sequence ¥ = (a, b, ¢, d) we fix some arbitrary non-collision time moments
t_ between collisions a and b, ty between b and ¢ and ¢, between ¢ and d. As for the rest
of the notation we adopt the conventions of Proposition 3.1. Quantities without upper
indices are calculated at time ;. As before, we have to discuss several cases.

Case 1. L,N L, # {0}. As we want to consider (suitable subsequences of) rich
sequences L, | L and Ly 1 L, cannot hold simultaneously. We may assume e.g.
Ly Y L,. Then a quick reference to case 2 in the proof of Proposition 3.1 shows that
codim(N) > 2 is ensured even by the subsegment (a, b, c) of X.

Case 2. Lyn L. = {0}, L,N L, = {0} and L. N Ly = {0}. From Proposition 3.1
applied to two subsegments containing three islands we know that N = N; N N, (as
we assumed that the sequence (a, b, ¢, d) has no shorter equivalent form, two consecutive
orthogonality relations are not possible). All we have to prove is the transversality of
the (at least 1 codimensional) submanifolds N; and N,. As double orthogonality is not
allowed there are two subcases. We shall discuss (i) in full detail and give some hint
related to (ii).
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(i) Ly L Ly and L, £ Ly (or the other way round). V; is defined as a velocity condition
in ty (by equation (3.7)), as for N, we have (by case 1 from Proposition 3.1) two possibil-
ities. If there exists a purely configurational translation transversal to Ny, the required
transversality is trivial. Otherwise the points of N, are defined by the velocity restriction

(Pryna. (v) =)Pryna.(v7) = 0. (3-8)

By L. £ Ly and L. N Ly = {0}, there definitely exists a vector 0 # dv € A, such that
dv L LyNA.. Apply the velocity perturbation v — o = (v+ 6v)° (here and from here on
given any non-zero vector z, (z)° stands for the unit vector which is a positive multiple
of z). Tangentiality to Nj is obvious, thus we are done if we show transversality to V.
An adaptation of the argument from Case 3 in Proposition 3.1 clearly works unless vy
and dv, are lineary dependent for any choice of dv. If such an accidental situation comes
about then the (generally at least two dimensional) velocity component v, should be
restricted to a line determined by the geometrical position of our cylinders. This gives
codim(N) > 2 together with (3.8) above by the transversality of A. and A, = L.

(ii) Ly £ Ly and L. / Ly. There are two possibilities for both Ny and N (see formulas
3.3 and 3.5). In any of these possibilities the transversality of the two manifolds is not
difficult to show and we leave the details to the reader. What is of key importance is the
pairwise transversality of generator subspaces (see also the end of section 3 from [16]).

Case 3. In addition to LyN L. = {0} e.g. L.NLy # {0}. The required codim(N) > 2
we get from the collision sequence (b, ¢, d) readily unless L, L L.. If such an orthogonality
is present, we get N = N; N N,. N, is defined as a condition on the velocity v~ at time
t_ (see formula 3.7). For the phase points belonging to N, the condition Pp nz,(v") =0
holds at time ¢,.. This later condition can be surely spoilt by applying purely configura-
tional translations at time £_. Under the effect of such translations, however, the velocity
v~ does not change. Thus we have found dq tangential to /NV; and transversal to N, the
required transversality of N; and N, is proven.

We have seen codim(N) > 2 in all possible cases, thus the Proposition is proven. O

3.2 Dynamical-Topological Considerations and finishing the proof

Let us denote by MI? the set of regular and poor points on our phase space. The aim of the
dynamical-topological part would be to prove that MI? is a slim subset; there may exist,
however, some trivial 1-codimensional submanifolds of non-sufficient points. Therefore
we should restrict our considerations to a subset M# C M. Just like in [21] and [16],
we define the complement of M#, M \ M#* as the set of points which have trajectories
without any collision in at least one of the non-trivial sub-billiards of our original billiard
(as to the notion of a sub-billiard see subsection 2.1). Applying the considerations of
Appendix 2 from [21] to our model, we see that M# has a finite number of connected
components. In the rest of the subsection we will prove that any of these components
belongs to one ergodic component. Then the proof of Theorem 2.4 is finished exactly the
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same way as it was done in Lemma A.2.3 in [21] by connecting the components of M#
with bundles of orbits of positive measure.

Let us first examine the set of poor phase points a bit closer. We have the natural
partition MJ N M# = M U MJ U M3_ where the lower index i refers to the number
of archipelagos of the collision sequence of x € M. We use Mj_ as not all collision
sequences with three archipelagos are poor (more precisely, for x € MY_ there are three
archipelagos, each containing only one island). However, it is useful to further subdivide
M3 into M3_ and MY, where the points z € MJ_ are characterized by the fact that both
archipelagos contain only one island. This partition is useful as we may treat the points
of M UM and MJ_ U MY separately. Indeed, observe that for the latter one the
statement of Proposition 3.1 holds, a fact we will strongly use in the proof of Lemma 3.4
below.

We introduce the notation M, for the set of non-sufficient points of our billiard. The
essence of the dynamical-topological part is the following Proposition:

Proposition 3.3 The set of points Mz? N M, N M# is slim.

Proof of this Proposition, closely following section 4 from [16], consists of several steps
according to the partition of the 'poor’ set described above. As the slimness of MY N MJY_
is an easy adaptation of former ball avoiding theorems, we just give a sketch with the
suitable references; while the rest of the proof is discussed in a more self-contained way
(Lemma 3.4).

The slimness of M? we get by a trivial adaptation of the classical ball avoiding The-
orem from [7] (as for a detailed description see [23] as well). Indeed, for a phase point
x € M? the entire trajectory avoids at least one cylinder (otherwise there would be more
archipelagos). On the other hand, the dynamics for such a phase point is determined by
a non-trivial sub-billiard. This sub-billiard is, however, modulo almost periodic motion,
either dispersive or the product of two dispersive billiards. In the former case the classi-
cal strong ball avoiding theorem (see [23]), in the latter a simple generalization of it (cf.
Lemma 4.6 from [21]) does the job.

As for the points z € MY the island structure of the trajectory is (a, b) with L, } L.
We can repeat the proof of Lemma 4.1 from [16] word by word; problem only arises at
the analogue of Sublemma 4.5 where the geometry of the cylinders is used. However, it
is possible to refer to Proposition 3.10 from [19] where we find the needed generalization
readily. Thus we have seen the slimness of MY U MY . It is enough to show something
weaker for the rest of the 'poor’ set to finish the proof of the Proposition:

Lemma 3.4 The subsets No = M§_ N M,, and Nj = M3, N M, are both slim.

Proof of this Lemma again relies on [16] (it is an adaptation of the proof of Lemma
4.2). Let us start with Ny. We may denote the island sequence of the examined point
x € Ny by (a,b, c) and fix some non-collision time moments, {_ between islands @ and b
and 0 between islands b and ¢ (N.B. these are cutting time moments). We note that no
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orthogonality is present, furthermore it can be assumed that either (i) L, N Ly = {0} or
(i) Ly N L, # {0} (otherwise reverse time direction). By Proposition 3.1 we know that
there is a small open neighborhood U of z and a codimension-one submanifold N such
that UN Ny C N. The explicit form of NV is defined by cases 1 and 2 from Proposition 3.1
for the possibilities (i) and (ii) above, respectively. We define the set

F, := {z € N : the positive semi-trajectory of z has proper collisions only with C.}.

As U N Ny is a subset of F', to finish the proof it is enough to show that the closed
set I, contains no open disk D in N. Assume the contrary. Now — following [16] — we
have to find manifolds v(y) that go through the points y € D transversally to N (and
thus to D). We always think of these manifolds in an infinitesimal sense, i.e. with inner
radius smaller than a fixed small e. By their help the set

D = Uyepy(y)

is constructed, the positive semi-trajectory of which — although does not avoid the original
cylinder Cy necessarily — surely does avoid the modified cylinder we obtain by shrinking
Cy by €. Just like in [16], a quick reference to the weak ball-avoiding theorem, applied to
the sub-billiard defined with lone cylinder C, (see [7, 23]) gives u(D) = 0, a contradiction.

The construction of v(y) should be done, due to the fact that we have various cases,
in a way a bit different from the one in [16]. From here on y = (¢, v) is an arbitrary fixed

point in D. First we define the so-called pseudo-unstable manifolds:

Yy) ={z=(d,v): v =v, ¢ —q€ A,|ld —ql| <e¢/2}

Ye(y) = {z : dist(y, z) < €/2; dist((S.)'z, (S.)'y) — 0 exponentially fast as t — +oo}
And then construct v(y) as:

Y(y) = Uzev&‘(y)'Yg(z) = Uzev;‘(y)’)’g(z)-

Here the notation (S,.)! stands for the dynamics determined by the sub-billiard of the
original system the configuration space of which we get by cutting out only the cylinder
C, from T9. Observe that v*(y) is the stable manifold through y for this sub-billiard,
while ~§(y) is analogous to the manifold that was used as (y) in [16]. By the explicit
form of the submanifolds NV (cases 1 and 2 in Proposition 3.1, respectively) we know that
these manifolds 7 are indeed transversal to N. More precisely, in case (ii) IV is described
by (3.6) and ¥ is always transversal to it. In case (i) there are two possibilities. If
the points of N are defined by (3.3), then it follows from the pairwise transversality
of generator spaces that 7§ and N are always transversal (see Lemma 4.6 from [16]).
Otherwise N is given by formula (3.5), and, as a further consequence of the pairwise
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transversal generator spaces, 7¢ does the job.
It is also straightforward that the set D avoids the shrunk cylinder.

As to the points of N} we choose 0 as the cutting time moment between the two
consecutive archipelagos. On the positive semi-trajectory there are collisions with two
cylinders C, and C} such that L, 1L L;. The last collision before 0 is with some C,, where
L. ) L, and L, ) L. Before that there may occur some further preceding collisions but
that makes no difference for us. In our local analysis we again have U N Nj C N where
N is now described by case 3 from Proposition 3.1. We define F'; as the set of points on
N which do not collide with any cylinder except C, and Cj, in the future. Submanifolds
for which transversality to N is to be shown (they trivially do avoid the shrunk cylinder):

Y(y) = {z : dist(y, 2) < € dist((Sap)'z, (Sap)ty) — 0 exponentially fast as t — +o0}.

Here (S,;)" is the sub-billiard dynamics we get by cutting out only the two orthogo-
nal cylinders C, and C,. We note that by orthogonality this dynamics is a product of
two dispersive billiard systems, and, as a consequence, the manifolds y(y) are products of
the stable manifolds for these two dispersive billiards. The transversality of vy(y) and N
is easily seen if L,N L. # {0} or LyN L. # {0}, as in that case N is described by (3.6). If
on the contrary no such intersection is present, the required transversality may be shown
indirectly. Indeed, points of N are described by the (at least) one-codimensional velocity
restriction (3.7). Now it is easy to see that if we combine 7(y) with the infinitesimal
perturbation (3.9) below and project onto the velocity sphere, all points of S4-1 in a
small open neighborhood of v can be covered. However, by the explicit form of (3.7) the
velocity translation

v=v,+v, = 0= ((1—¢€)vy+ (1+€)vp)° (3.9)

is clearly tangential to N.
The demonstration of our Lemma is complete. O Hence the Proposition is proven O.
Our last task is to consider singular trajectories. More precisely, we should prove
the analogues of Propositions 3.2 and 3.3 for points of M* on the one hand and verify
the Chernov-Sinai Ansatz on the other hand. Following tradition ([10, 21, 16]) we state
Proposition 3.5 below from which both the Ansatz and the analogous Lemmas follow.
In our setting eventually simple phase points are points of singular reflections 2 € SR
for which (i) the positive semi-trajectory S>>z is regular and (ii) there exists a time
moment ¢ > 0 such that the collision sequence of SI%*) contains only one archipelago.

Proposition 3.5 For every cell R of mazimal dimension 2d—3 in SR, the set Re, C R
of eventually simple points can be covered by countably many closed zero-subsets (with
respect to the induced measure pc) of C.

Proof of this Proposition, just like as it was with the analogous statements in [16, 21],
is an adaptation of the proof of Main Theorem 6.1 in [10]. Let us denote one particular
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eventually simple collision sequence (containing only one archipelago) by X. There are
two possible cases, either ¥ ~ (a) or ¥ ~ (a, b) with L, 1 L. For both of them there is
definitely at least one cylinder C, avoided by the semi-trajectory S%*). In other words
our eventually simple phase point belongs to a ball avoiding set F, (the definitions of
Yo, U(yo), Fy, F are taken from the above references). We also define the pseudo-
stable invariant manifolds 75" (y) and v(y) according to the literature: if ¥ ~ (a),
we have dim(y' (y)) = dim(A,) and dim(v:(y)) = dim(L,) — 1; while for ¥ ~ (a,b)
we get dim(v;'(y)) = 1 and dim(v3(y)) = dim(L,) + dim(Ly) — 2. However in both
cases we arrive, just like in the references, at the d — 1-dimensional v, (y), which is a
concave orthogonal manifold. The key point is again that backward images of concave
orthogonal manifolds are always transversal to the set of singular reflections (as it is true
by sublemma 4.2 in [8]). This together with weak ball avoiding gives an indirect proof of
the Proposition (similarly to the arguments in Lemma 3.4). O

Propositions 3.2, 3.3 and 3.5 altogether imply that any connected component of the
set M# belongs to one ergodic component. As already mentioned at the first paragraph
of the subsection, a reference to Lemma A.2.3 from [21] finishes the proof of the required
global ergodicity.

4 Theorem 2.5 — three cylinders

In this section our aim is to prove, following the steps (H1)-(H2) mentioned in subsec-
tion 2.2, the hyperbolicity of a billiard with three cylinders which satisfy the transitivity
condition of conjecture 2.1. Observe that the transitivity condition may only hold if there
is at most one orthogonal pair (i.e. a pair 4, j with L; L L;) among the three cylinders
(otherwise there would be a non-trivial orthogonal splitting present, see Remark 2.3). As
a cosequence the archipelago structure is unique for any collision sequence. There are
two possible types of archipelagos: an archipelago either contains one single island, or it
is a maximal sequence of alternating islands of two orthogonal cylinders.
In symbolic collision sequences we refer to the three cylinders C, Csy, Cs simply by the
numbers 1, 2 and 3. In all our notation we follow section 3, there is only one difference:
to simplify the calculation of neutral subspaces in subsection 4.1, we adopt a conven-
tion from [10]; we fix the advance of one particular (central) collision zero. That way
sufficiency of the segment is equivalent to the triviality of the neutral subspace, N = {0}.
Of course, all trivially sufficient trajectories (in the sense of Remark 2.6) are considered
to be rich. Besides, the specific notion of richness we use for our model is exactly the
double connectedness already mentioned in subsection 2.3: a phase point z is rich if there
exists a cutting time moment ¢ on its entire trajectory, such that the symbolic collision
sequences for both segments S(—°>tz and S[¥>)z are connected (i.e. they contain enough
cylinders to generate a transitive action).
The essence of our geometric-algebraic considerations (subsection 4.1) is to prove

Proposition 4.1 Assume x € M° is an arbitrary rich and regular phase point. There
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exist an open neighborhood x € Uy and a submanifold N of M such that (i) codim(N) > 1
and (i1) Yy € Uy \ N is sufficient.

As for the dynamical-topological part our key statement is

Proposition 4.2 Let us denote by Mz(a) the set of reqular and poor phase points. The set
Mz()) 18 of zero pu-measure.

Actually in subsection 4.2 we prove a stronger statement (Lemma 4.4) which implies
the Proposition above. We finish the discussion of Theorem 2.5 in the same subsection.

4.1 Geometric-Algebraic Considerations

In the case of three cylinders one easily gets a classification of all possible rich collision
sequences. Indeed, a rich collision sequence necessarily contains a subsequence Y which
has (up to equivalence) one of the forms below:
(a) ¥~ (1,(2—3)>3,1) (here (2 — 3)>3 stands for a sequence of the cylinders C; and Cj
which contains at least three consecutive collisions in the shortest equivalent form);
(b) S ~ (2~ )3, 1,3);
(c) ¥ ~ (a,b,c) with A,N A, = A, N A. = Ay N A, = {0} (the possibility a = ¢ is not
excluded);
(d) Y~ (1, 2, 3, 1) with A1 N A2 = Al N A3 = {O} but AQ N Ag 75 {0},
(e) T~ (1,2,3,1,2) with A; N A # {0}
A few hints are in order to show how one can get such a classification. If we disregard
the trivially sufficient cases mentioned in Remark 2.6, any rich sequence should contain
at least four consecutive islands. Now there are two possibilities for the shortest possible
equivalent forms: either there is a subsegment of type (2 — 3)>3, or our rich sequence
is a finite part of the infinite sequence (...1,2,3,1,2,3,...). In the presence of (2 — 3)>3,
a transversality relation A, N A3 = {0} leads to case (c). Without this transversality
the segment (2 — 3)>3 is not even connected and continuing it to a rich sequence gives
one of the cases (a) or (b). Now let us examine ¥ ~ (1,2,3,1,...); we may assume that
there is no orthogonal pair among the three cylinders (indeed, otherwise our sequence
is either not rich or equivalent to one of the above discussed cases). Assume first that
A; N Ay = {0} and A; N A3 = {0} simultaneously, we arrive either at (c) or at (d).
We note that the first four islands are enough for richness if and only if both of these
transversalities hold (remember orthogonality is excluded). The other possibility is that
at least one of these transversality relations does not hold and one or two additional
islands should be present. If A; N A3 # {0} we are automatically at case (e). Otherwise
Ay N Ay = {0} and A; N Ay # {0}, the rich sequence contains six islands and it has a
subsequence (2,3,1,2,3) which is described by case (e).

Now our task is to describe the one-codimensional submanifolds N for all the above
five cases. We shall discuss the arguments for cases (a) and (e) in full detail; as to the
rest we just give some hints and leave the proof to the reader.
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Case (a). Non-collision time moments directly after the first and before the second
collision with C; are denoted by ¢_ and t,, while the advances of these two collisions
are o and o, respectively. We shall get N = N U N@® with both N and N®
one-codimensional. Observe that we may exclude the possibility L, | L3, otherwise we
would have a shorter equivalent form.

To get NI consider the trajectory segment S-+*+lz. Time evolution in this shorter
time interval is determined by the sub-billiard dynamics defined by cutting out only two
cylinders Cy and Cj (this can be understood on the torus T where d’ = dim(Ly + Ls),
together with almost periodic motion in the directions of A, N A3). From Proposition 3.1
we however know that, in a small open neighborhood of z phase points non-sufficient
with respect to this sub-dynamics in the time interval [t_, ¢, ] lie in a one-codimensional
submanifold N (remember Ly [ Lj!).

Consider now on the contrary phase points which do not lie on N, i.e. which are
sufficient with respect to the above mentioned subdynamics. Among them we would like
to characterize those non-sufficient in the whole time interval [a, b] for the full billiard
dynamics. We shall show below that such points form a one-codimensional submanifold
N@_ The advances of all the collisions with C, and Cj are equal, so we may use the
convention mentioned in the beginning of section 4 and fix the advances for all these
central collisions to be zero. Observe that for any neutral vector calculated at time
moments ¢ and t,: w™ = w" =w € Ay N A3. Moreover, neutrality with respect to the
first and the second collisions with C; implies (by (2.2))

— — o — T = ot
oav] =w; =w! =av;.

As o = 0 or o = 0 would mean sufficiency we may conclude that
o7 o7 (4.1)

Apply now all possible purely configurational translations dg at time moment ¢ ; v~
does not change while the velocity difference v~ — v™ moves on a surface of a sphere of
highest possible dimension in L, + L3. Following the argument at the end of case 1 from
Proposition 3.1, we see that the perturbations dq definitely give a direction transversal to
the submanifold N® of non-sufficient points. (L; L (Ly+ L3) is not possible, in that case
the transitivity condition would not hold for our three cylinders). Thus codim(N®) > 1.
The discussion of Case (b) is analogous to Case (a) and we leave it to the reader
(see also cases 9 and 11 in section 4 of [10]). In Case (c) we may directly refer to
Proposition 3.1 to see that the submanifold N is indeed (at least) one-codimensional.
As to Case (d) the key is again reference to Proposition 3.1 with some adaptation.
However, a few hints are in order. We may assume that (i) any two of the three base
subspaces are transversal (otherwise we have sufficiency apart from codimension 1 by case
2, Proposition 3.1); (ii) there is no orthogonal pair among the three cylinders (otherwise
our sequence would not be rich, and, continuing it in any way to a rich sequence would
lead to one of the cases (a) or (b)). Now the whole discussion is analogous to case 1
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from Proposition 3.1 (hint: calculate w; and ws by Lemma 2.7 for a neutral vector w
directly after the island with Cs and apply configurational translations directly before
that island).

In all the above cases we could describe the one-codimensional manifold N with the
help of former methods (in cases (¢) and (d) by techniques from subsection 3.1, in cases
(a) and (b) by adaptation of the proofs from [10] to the cylindric billiard setting). The
situation is however quite different with Case (e).

Lemma 4.3 Consider a phase point © with collision sequence ¥ ~ (1,2,3,1,2), where
Ay N Az # {0} (i.e. case (e)). The statement of Proposition 4.1 is true for x.

Proof. We may assume that neither orthogonality, nor intersection is present for any
pair of base subspaces. Indeed, in case L; L L; (i # j) our collision sequence would be
equivalent to any of the above cases (a) or (b). On the other hand if L, N L; # {0} for
some 7 # j, we would have sufficiency in a sub-billiard for the subsegment (7, j) outside
a 1-codimensional manifold NV, and a reference to the arguments in cases (a) or (b)
would give N = NU U N@),

We choose 3 as our central collision and fix the advance as zero. Notation for the
other advances:

o' for the first collision with C; and « for the second;

B for the first collision with Cy and 3’ for the second.

We exclude the possibilities @« = 0 and 8 = 0, in these cases we would have sufficiency
in a sub-billiard for one of the sequences (3,1) or (2,3) and could repeat the argument
from case (a). The non-collision time moments we fix are:

t, after the first 1 and before the first 2;

t_ after the first 2 and before 3;

t, after 3 and before the second 1;

t4 after the second 1 and before the second 2.

Depending on the geometrical position of the cylinders we distinguish two further sub-
cases.

Subcase (el). dim(LiNAy) < 1, thus the two subspaces are either transversal or the
intersection L; N A, is a line. By the convention of zero advance at the central collision
we know that for any neutral vector at time moments ¢ and t,, wt = w™ = w € A;.
Moreover, by applying (2.3) to our collision sequence we get the set of equations:

av;y = w; = (o = B)v + Bu]
Buy = wy = (B —a)v¥ + v (4.2)

The first equation implies, that for non-sufficient points:

INER;AA0: (v — Avy) ||y (4.3)
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while from the second equation in (4.2) we get that with the same \:
(Avy —vF) [|v]- (4.4)

Now assume for a while that neither vy ||v3 nor v7 ||v;" and apply a purely configura-
tional translation at time moment ¢_ for which dg € A; N A3. Under the effect of such a
perturbation:

(i) none of the velocity vectors v=, v* and v¥ changes. Thus if the perturbed phase
points remain non-sufficient, as the vector quantities in (4.4) do not change, equation
(4.3) holds throughout the perturbation with the original constant A (remember that
parallelity is excluded).
(ii) On the other hand as A; N Ay N A3 = {0} (otherwise our cylinders could not satisfy
the transitivity condition), under the effect of the above perturbation the velocity vector
at time moment t, changes,

vt — T° (4.5)

where the velocity difference v* — * moves on an arc of a circle that goes through the
origin in L. (More precisely, if dim(A; N A3) = 1, it might be possible that for such
a perturbation dg € A; N A3 the velocity v* does not change. However in that case
vy € ((A; N A3) + Ay). Thus the (at least) two dimensional velocity component vy is
restricted to a line, which means a one-codimensional restriction for our phase point.)

Now we finish our argument similarly to case 1 from Proposition 3.1. Observe that
by (i), as the left hand side of (4.3) is the same for v* and 7*:

vy || o7 (4.6)

If Ly N Ay = {0}, then if we project orthogonally the arc of the perturbation (4.5)
onto L; it remains an ellipse, thus (4.6) cannot hold. If L; N Ay # {0}, then by the
nature of dynamics

PL10A2 (U*) = PL10A2 (Ui) = PL10A2 (77*)

If Pr,na,(v) # 0 (otherwise we have velocity restriction giving codim(N) > 1 itself),
we know that (4.6) can only hold if v} = @7, which is impossible as in subcase (el) we
assumed dim(L; N Ap) < 1.

Finally let us say a few words about the points for which e.g. vy ||vi". Apply all
possible purely configurational translations at ¢_; v~ does not change so for the perturbed
velocity at time ¢, we expect o7 ||v]". However v+ — v+ moves on a surface of a sphere of
full dimension inside L3, and, after projecting orthogonally onto L, we get (by L; J L3):
codimN > 1 exactly the same way as at the end of case 1 from Proposition 3.1. (Observe
that the condition dim(L; N Ay) < 1 of subcase (el) was not used in the analysis of this
parallelity.)

Subcase (e2). dim(LiNAz) > 2. At first we discuss what we can do if (L1NAy) [ L3
(in other words if L; N Ay ¢ As). By the nature of dynamics for any neutral vector w
we get the following series of equations:

PL10A2 (w) = PL10A2 (w*) = aIPLlﬂAz (U*) = aIPL10A2 (U_)'
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Here w* is the value of the neutral vector w at time moment ¢,. On the other hand
trivially:
PL10A2 (’UJ) = aPL1ﬂA2 (U+)'

Thus if the point is not sufficient:

PLlﬂAz (U_) ”PLlﬂAz (U+)'

Apply all possible configurational translations at t_ to conclude, exactly the same way
as with the parallelity discussed at the end of subcase (el), that codim(N) > 1.
Problem only arises with the above argument if L; N Ay C Aj, a possibility we
discuss in an indirect way. First of all observe that in such a case there are a couple
of generalizations for the main argument of subcase (el). By L; N Ay C Ajz trivially
Ay N Az # {0}. Thus we may apply the whole discussion word by word for the reverse
directed sequence with 1 <> 2, (in that case we would e.g. apply dg € Ay N A3 at time
ty). It is also true that the scheme works for higher dimensional L; N A, as well whenever

dzm(L1 N AQ) S dzm(Al N A3) (47)

Indeed, following the argument of subcase (el), after application of dg € A; N A3z at time
moment ¢, the dimension of the sphere on the surface of which the velocity difference
v* — 0* moves inside Ly is min(dim(A; N As),dim(Ly) — 1) (otherwise we would have a
restriction on the velocity v~, which would mean codim(N) > 1 itself). Problem only
arises if there are too many orthogonal directions between L; and Lo, in other words if
(4.7) does not hold (otherwise the effect of our perturbation is 'visible’ at the orthogonal
projection of our velocity difference onto L.)

Assume now that dim(L;NAg) = k > 1. However, from L;N Ay C Aj trivially follows
that dim(Ay N As) > k, thus by the above considerations (now applied with 1 <> 2) there
is no problem if

dim(Ly N Ay) > dim(Ly N Ay). (4.8)

Now we are ready with our indirect proof with one more reference to the 1 <+ 2 symmetry
as either (4.8) or the opposite inequality surely holds.

The demonstration of the Lemma is ready. 0. Hence the Proposition. O.

We close this subsection with an example. The strange geometric position of sub-
spaces discussed in subcase (e2) above might seem quite unnatural (such a thing does
not happen in hard ball systems, see also the appendix). One can however easily find an
example from a well studied category, namely an “orthogonal cylindric billiard” (see [21]
as basic reference for this example). In orthogonal cylindric billiards the base subspaces
for the cylinders are given by subsets of a fixed orthonormal basis in R%. We define our
billiard on T®, the base subspaces are

K, ={1,2,3,4}; K, ={3,4,5,6}; Ky ={6,7,8}.

For this model dim(L; N As) =2 and Ly N Ay C As.

26



4.2 Dynamical-Topological Considerations and finishing the proof

Proposition 4.2 is a direct consequence of the following two Lemmas:

Lemma 4.4 Denote by M the set of those reqular phase points x for which there exists
a time moment ty such that the segment Sz is not connected. u(M?) = 0.

Proof of this Lemma, as it might not be surprising for the reader, is again weak ball-
avoiding ([7, 23]). Without loss of generality we may restrict our attention to points x €
MY for which Sz is not connected. Now by the orthogonal splitting (see remark 2.3)
the dynamics for this semi-trajectory is determined by a product dynamics of K-system(s)
and almost periodic motion (the ’K-factors’ in the product dynamics possess the K-
property as they are either dispersive billiards or the results of section 3 apply to them).
On the other hand the positive semi-trajectory avoids one of the cylinders, e.g. Cj.
However, for any of the product dynamics above weak ball-avoiding theorems can be
applied, thus indeed p(M?) =0. O

Lemma 4.5 Any symbolic collision sequence that contains three consecutive connected
subsequences is rich.

Proof. There are finite time moments ¢; < t3 such that all the segments (—oo,t;];
[t1,t3] and [t3,+00) are connected. It may happen that the sequence is rich in the sense of
Remark 2.6 and than we are done. Otherwise it cannot happen that a connected collision
sequence is contained in one archipelago. As a consequence there exists a cutting time
moment ¢y with ¢; < t5 < t3. As both (—o00, %3] and [ts, +00) are connected and ¢y is
cutting, the whole sequence is doubly connected, thus rich (note that such a property is
invariant under equivalence transformations). O

Propositions 4.1 and 4.2 together with the local hyperbolicity theorem (see subsec-
tion 2.2) give the proof of Theorem 2.5. Full hyperbolicity (the fact that the Lyapunov
exponents are nonzero almost everywhere) implies, on the basis of Katok-Strelcyn theory
([6]), that the system has at most a countable number of ergodic components, each of pos-
itive measure. Moreover, on any of these ergodic components the dynamics is K-mixing
(see e.g. [13]) and possesses the Bernoulli-property (see [3, 12]).

Concluding Remarks. Of course the natural question that arises how we could gen-
eralize the results of Theorems 2.4 and 2.5 further. If we increase the number of cylinders,
we encounter more and more difficulty in the geometric-algebraic considerations as the
number of collision sequences to be studied (with, moreover, different possible geometric
positions of the cylinders) is much higher. This makes things especially complicated if
we want to prove ergodicity, thus we should 'gain’ two codimensions from the equations
on the neutral subspaces. In a general setting (just like in our Proposition 3.2) one may
hope to get codim(N) > 2 by N = N; N N, with N; and N, transversal and both one-
codimensional. However, as the number of possible collision sequences increases, there
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are more and more possibilities for the manifolds N; and N, above, in many cases ob-
tained in quite an implicit way (see Lemma 4.3), thus proving transversality for all cases
seems very difficult, if not impossible (even in the setting of Theorem 2.4 one has to con-
sider several possibilities, see Proposition 3.2). I think that proving the ergodicity part
of conjecture 2.1 is at the present level much far away; we might not even guess what
the suitable notion of richness for the proof of ergodicity could be. However for proving
hyperbolicity even in a general setting the notion of richness (double connectedness) we
use in section 4 seems to be enough. Though this task seems to be highly nontrivial at
the geometric-algebraic part, we hope remarkable progress related to it ([14]).

As to the dynamical-topological considerations, although results from the literature
were quite easily adapted to our setting, if we increase the number of cylinders this does
not remain true. The main problem is that ball avoiding theorems, in their classical
form, are of inductive nature, i.e. they rely on the K-property of smaller subsystems.
For Hard Ball Systems a new type of ball avoiding theorem is used in [18], which is not
inductive in its nature. This method, however, uses special symmetries of hard balls,
thus its adaptation to the general cylindric billiard setting seems impossible.

Altogether we can say that if we want to discuss ergodic and hyperbolic properties
for all cylindric billiards, i.e. to prove conjecture 2.1 in its full generality, a kind of
breakthrough would be needed. Nevertheless the simple Lemma 2.7 could be a good
starting point (for the geometric-algebraic considerations) even in such a general setting.
We could say that this Lemma ’saves’ as much of the connected path formula — which
uses, e.g., the conservation of momenta in hard ball systems — for the cylindric billiard
setup as possible (see also the Appendix). Probably the most remarkable consequence of
our results is that they prove chaotic/ ergodic properties for full subclasses of cylindric
billiards. Thus we may get more convinced about the validity of conjecture 2.1. In other
words there is increasing evidence that the Boltzmann-Sinai Ergodic Hypothesis is true
because Hard Ball Systems belong to the class of cylindric billiards that satisfy the
transitivity condition.

Appendix: Some remarks on Hard Ball Systems

The most studied and physically most interesting cylindric billiards are particles with
some hard ball pair-interactions, especially the system of Hard Balls. Though these
systems possess some remarkable symmetries, their study gets more and more compli-
cated as we increase the number of interacting balls. Ergodicity of two balls in any
dimensions follows directly from the fundamental theorem as this system is a dispersive
billiard ([2, 8]). Three balls are only semi-dispersive, thus their ergodicity is a much
more difficult task ([9]). Generalization to the case of four balls has been achieved only
with the dimensional restriction v > 3 on our balls ([10]). Later on even the ergodicity
of an arbitrary number of hard balls has been proven ([13]), however the dimensional
restriction v > N was needed.

As for the hyperbolicity of Hard Ball Systems, applying highly nontrivial techniques
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in the geometric-algebraic part Simdnyi and Szdsz managed to discuss all possibilities
for N and v. Nevertheless the result in [18] only holds apart from a countable union
of proper, analytic submanifolds for the outer geometric parameters (i.e. for the masses
and radii of the particles).

Ergodicity and/or hyperbolicity for some classes of hard ball systems follows from the
results of this paper. Any system of three interacting particles (with a connected collision
graph) is a special case of the billiard discussed in section 3 (see also subsection 2.1).
Thus Theorem 2.4 can be viewed in a way as a generalization of [9] to a cylindric billiard
setting. A nice example of a Hamiltonian system with restricted hard ball interactions
that belongs to the class of cylindric billiards discussed in section 4 is the one already
mentioned in subsection 2.1, i.e. four balls with only one radius different from zero. A
natural question is what we can say about the classical case of four hard balls (with all
possible pairwise interactions allowed). For this system even ergodicity has been shown
in [10] if » > 3, thus we focus our analysis on showing hyperbolicity for v = 2.

As to the dynamical-topological part, the analogue of Lemma 4.4 has been settled
for any number of balls in any dimensions by a weak ball avoiding Lemma which uses
strongly the symmetries of hard ball systems, together with the induction hypothesis (see
e.g. section 5 from [18]). Thus in the rest of the appendix our aim is to demonstrate
how the proof of Proposition 4.1 can be adapted to four hard balls. Our basic reference
is section 4 from [10]. Rich collision sequences for the system of four balls were classified
there (up to equivalence) in eleven cases. Cases 9-11 are analogous to cases (a) and
(b) from Proposition 4.1 of this paper. Handling these sequences is much simplified by
the fact that they contain subsequences sufficient with respect to a suitable sub-billiard
dynamics. This is the strategy used in [10] as well; we may repeat the argumentation
word by word with the only difference that because of v = 2 we get codim(N) > 1 instead
of codim(N) > 2 for the submanifold of non-sufficient points.

In cases 1-8 however the proofs of [10] do not go through as they use the dimensional
restriction (see also Remark 4.28. in that paper). These collision sequences are similar
to our case (e) from Proposition 4.1 (actually case 1 is exactly our case (e)). Observe
that for a cylindric billiard equivalent to a hard ball system it is always true that either
L,N A, ={0} or L, L Ly, thus we need not care about situations analogous to subcase
(e2) above. For brevity we have chosen one from cases 2-8, namely case 7, for which we
show codim(N) > 1 by an adaptation of our Lemma 4.3. All the other collision sequences
are treated in a much similar way.

In case 7 the collision sequence is ({3, 4}, {1,4}, {1, 2}, {1, 3}, {1, 4}) (here {i, j} means
a collision of the two balls ¢ # j). In our notation we closely follow Lemma 4.3. Thus
the advances are:

o for the collision {3,4};

« for the collision {1, 3};

B for the first collision {1,4} and 3’ for the second.

Moreover we choose {1,2} as our central collision with advance 0. The non-collision time
moments we fix are:
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t. after {3,4} and before the first {1, 4};

t_ after the first {1,4} and before {1, 2};

t. after {1,2} and before {1, 3};

t4 after {1,3} and before the second {1,4}.

The form of a velocity vector v at any time moment is:

U= (Ula V2, U3, U4)

where, by the convention of zero total momentum we have vy + vo + v3 + v4 = 0 (here v;
means the two-dimensional velocity vector of the ball 7). We calculate the neutral spaces
at one of the time moments ¢_ and ¢, (by zero advance neutral vectors do not change at
all in the course of the reflection {1, 2}, thus the two neutral spaces coincide).
Neutrality with respect to the central collision {1,2} means w; = wy. Moreover, by
the form of the generator subspace for any collision in a hard ball system and by the
general formula (2.3), we get the following four equations for our neutral vector:

wy—wy = (o = B)(v; —vp) + Bvg —vp);

wy —wy = Plo; —vg);
wy —wy = alv] —vf);
wi—wy = (8= a)(of —of) +alvf —of).

(A.1)

By the second and the fourth of the above equations we know that for non-sufficient
points (let us assume for a while 3 # 0):

MERANA0: ((vy —vy) = A — o)) || 0f = of) (A.2)

while if we subtract the second equation in (A.1) from the third, then together with the
first equation we get that for the same X:

(07 —v3) =A@ —v))) || (w5 —v)). (A.3)

We may handle the degenerate possibilities of zero advances (o« = 0, 3 = 0) or
parallelity (e.g. if (v; —v, ) || (vi —v])) exactly the same way as in Lemma 4.3. Otherwise

apply a purely configurational translation

dq = (6(]1’ 0q1,0q1, —35611)

at time ¢_. By the structure of the generator spaces neither of the velocity vectors
v™,v", v* changes, thus if the point remains nonsufficient, by (A.2), the value X does not
change throughout the perturbation (remember parallelity is excluded). As a consequence
the left hand side of (A.3) remains constant, thus for the perturbed velocity o* the
difference v; — v is parallel to the original v; — v;. This component however moves on
an arc of a circle.

30



Acknowledgements

First of all I am much greatful to my supervisor, Domokos Szasz for suggesting me this
topic and helping me a lot in all my considerations. Careful reading of the manuscript
and lots of useful remarks are thankfully acknowledged for Nandor Siméanyi, Imre Péter
Téth and for both refrees of the paper.

This research was partially supported by Hungarian National Foundation for Scientific
Research, grant OTKA T26176; and by the Research Group StochasticsQTUB of the
Hungarian Academy of Sciences, affiliated to the Technical University of Budapest.

References

[1]

2]

[3]

[4]

[5]
[6]

i
8]
g

[10]

11]

12]

13]

[14]

D. Burago, S. Ferleger, A. Kononenko; Uniform Estimates on the Number of Collisions in
Semi-Dispersive Billiards, Annals of Mathematics 147, 695-708, (1998)

Ya.G. Sinai and N. Chernov; Ergodic Properties of Certain Systems of 2-D Discs and 3-D
Balls, Russian Math. Surveys (3) 42, 181-207, (1987)

N. Chernov and C. Haskell; Nonuniformly Hyperbolic K-systems are Bernoulli, Ergod. Th.
Dyn. Sys. 16, 19-44, (1996)

G. Galperin; On Systems of Locally Interacting and Repelling Particles Moving in Space,
Trudy MMO 43, 142-196, (1981).

W. Hurewicz and H. Wallman; Dimension Theory, Princeton University Press, 1941

A. Katok and J.-M.Strelcyn; Invariant Manifolds, Entropy and Billiards; Smooth Maps
with Singularities, Lecture Notes in Mathematics 1222, Springer, 1986

A. Kramli, N. Simdnyi and D. Szédsz; Ergodic Properties of Semi-Dispersing Billiards I.
Two cylindric scatterers in the 3-D torus, Nonlinearity 2, 311-326, (1989).

A. Kramli, N. Simdnyi and D. Szasz; A ”Transversal” Fundamental Theorem for Semi-
Dispersive Billiards, Comm. Math. Phys. 129, 535-560, (1990).

A. Kramli, N. Simdnyi and D. Szdsz; The K-Property of Three Billiard Balls, Annals of
Mathematics 133, 37-72, (1991.)

A. Kramli, N. Simanyi and D. Szdsz; The K-Property of Four Billiard Balls, Comm. Math.
Phys. 144, 107-148, (1992).

C. Liverani and M. Wojtkowski; Ergodicity in Hamiltonian Systems, Dynamics Reported
4 (New series), 130-202, (1995).

D. Ornstein and B. Weiss; On the Bernoulli nature of systems with some hyperbolic struc-
ture, Ergod. Th. Dyn. Sys. 18, 441-456, (1998).

N. Siményi; The K-Property of N Billiards Balls I., Invent. Math. 108, 521-548, (1992);
II. ibidem 110, 151-172, (1992).

N. Simdanyi; in preparation

31



[15]
[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

N. Simanyi, Oral communication

N. Simanyi and D. Szasz; The K-Property of 4— D Billiards with Non-Orthogonal Cylindric
Scatterers, J. Stat. Phys. 76, Nos. 1/2, 587-604, (1994).

N. Simanyi and D. Szdsz; The K-Property of Hamiltonian Systems with Restricted Hard
Ball Interactions, Mathematical Research Letters 2, No. 6, 751-770, (1995).

N. Simanyi and D. Szasz; Hard Ball Systems Are Completely Hyperbolic, Annals of Math-
ematics 149, 35-96, (1999).

N. Siményi and D. Szasz; Non-Integrability of Cylindric Billiards and Transitive Lie-Group
Actions, to appear in Ergod. Th. Dyn. Sys.

D. Szész; Ergodicity of Classical Billiard Balls, Physica A 194, 86-92, (1993).

D. Szasz; The K-Property of “Orthogonal” Cylindric Billiards, Comm. Math. Phys. 160,
581-597, (1994).

D. Szédsz; Boltzmann’s Ergodic Hypothesis, a Conjecture for Centuries?, Studia Sci. Math.
Hung 31, 299-322, (1996).

D. Szasz; Ball-Avoiding Theorems, to appear in Ergod. Th. Dyn. Sys.

L.N. Vaserstein; On Systems of Particles with Finite Range and/or Repulsive Interactions,
Comm. Math. Phys. 69, 31-56, (1979).

32



