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6. Expected Value and Covariance Matrices

The main purpose of this section is a discussion of expected value and covariance for random matrices and vectors. These

topics are particularly important in multivariate statistical models and the multivariate normal distribution. This section

requires some prerequisite knowledge of linear algebra.

Basic Theory

We will let ℝm×n denote the space of all m×n matrices of real numbers. In particular, we will identify ℝn with ℝn×1, so

that an ordered n-tuple can also be thought of as an n×1 column vector. The transpose of a matrix A is denoted AT . As

usual, our starting point is a random experiment with a probability measure ℙ on an underlying sample space.

Expected Value of a Random Matrix

Suppose that X is an m×n matrix of real-valued random variables, whose (i, j) entry is denoted Xi , j . Equivalently, X

can be thought of as a random m×n matrix. It is natural to define the expected value 𝔼( X) to be the m×n matrix whose

(i, j) entry is 𝔼( Xi , j ), the expected value of Xi , j .

Many of the basic properties of expected value of random variables have analogies for expected value of random matrices,

with matrix operation replacing the ordinary ones.

 1. Show that 𝔼( X + Y) = 𝔼( X) + 𝔼(Y) if X and Y  are random m×n matrices.

 2. Show that 𝔼( A X) = A 𝔼( X) if A is a non-random m×n matrix and X is random n×k matrix.

 3. Show that 𝔼( X Y) = 𝔼( X) 𝔼(Y) if X is a random m×n matrix, Y  is a random n×k matrix, and X and Y  are

independent.

Covariance Matrices

Suppose now that X is a random vector in ℝm  and Y  is a random vector in ℝn. The covariance matrix of X and Y  is

the m×n matrix cov( X, Y) whose (i, j) entry is cov( Xi , Y j ) the covariance of Xi  and Y j .

 4. Show that cov( X, Y) = 𝔼(( X − 𝔼( X)) (Y − 𝔼(Y))T
).

 5. Show that cov( X, Y) = 𝔼( X Y T
) − 𝔼( X) 𝔼(Y)T

 6. Show that cov(Y , X) = cov( X, Y)T

 7. Show that cov( X, Y) = 0  if and only if each coordinate of X is uncorrelated with each coordinate of Y  (in

particular, this holds if X and Y  are independent).

 8. Show that cov( X + Y , Z) = cov( X, Z) + cov(Y , Z) if X and Y  are random vectors in ℝm  and Z is a random



vector in ℝn.

 9. Show that cov( X, Y + Z) = cov( X, Y) + cov( X, Z) if X is a random vector in ℝm  and Y  and Z are random

vectors in ℝn.

 10. Show that cov( A X, Y) = A cov( X, Y) if X is a random vector in ℝm , Y  is a random vector in ℝn, and A is a

non-random matrix in ℝk×m .

 11. Show that cov( X, A Y) = cov( X, Y) AT  if X is a random vector in ℝm , Y  is a random vector in ℝn, and A is a

non-random matrix in ℝk×n.

Variance-Covariance Matrices

Suppose now that X = ( X1, X2, ..., Xn) is a random vector in ℝn. The covariance matrix of X with itself is called the

variance-covariance matrix of X:

VC( X) = cov( X, X)

 12. Show that VC( X) is a symmetric n×n matrix with (var( X1), var( X2), ..., var( Xn)) on the diagonal.

 13. Show that VC( X + Y) = VC( X) + cov( X, Y) + cov(Y , X) + VC(Y) if X and Y  are random vectors in ℝn.

 14. Show that VC( A X) = A VC( X) AT  if X is a random vector in ℝn and A is a non-random matrix in ℝm×n.

If a ∈ ℝn, note that aT  X is simply the inner product or dot product of a with X, and is a linear combination of the

coordinates of X:

aT  X = ∑
i =1
n ai  Xi

 15. Show that var( aT  X) = aT  VC( X) a if X is a random vector in ℝn and a ∈ ℝn. Thus conclude that VC( X) is

either positive semi-definite or positive definite. In particular, the eigenvalues and the determinant of VC( X) are

nonnegative.

 16. Show that VC( X) is positive semi-definite (but not positive definite) if and only if there exists a ∈ ℝn and c ∈ ℝ

such that, with probability 1,

aT  X = ∑
i =1
n ai  Xi = c

Thus, if VC( X) is positive semi-definite, then one of the coordinates of X can be written as an affine transformation of

the other coordinates (and hence can usually be eliminated in the underlying model). By contrast, if VC( X) is positive

definite, then this cannot happen; VC( X) has positive eigenvalues and determinant and is invertible.

Best Linear Predictors

Suppose again that X = ( X1, X2, ..., Xm) is a random vector in ℝm  and that Y = (Y 1, Y 2, ..., Y n) is a random vector

in ℝn. We are interested in finding the linear (technically affine) function of X,

A X + b, A ∈ ℝn×m , b ∈ ℝn



that is closest to Y  in the mean square sense. This problem is of fundamental importance in statistics when random vector

X, the predictor vector is observable, but not random vector Y , the response vector. Our discussion here generalizes the

one-dimensional case, when X  and Y  are random variables. That problem was solved in the section on Covariance and

Correlation. We will assume that VC( X) is positive definite, so that none of the coordinates of X can be written as an

affine function of the other coordinates.

 17. Show that 𝔼(
‖‖Y − ( A X + b)‖‖

2

) is minimized when A = cov(Y , X) VC( X)−1 and

b = 𝔼(Y) − cov(Y , X) VC( X)−1  𝔼( X)

Thus, the linear function of X that is closest to X in the mean square sense is the random vector

L(Y ||X) = 𝔼(Y) + cov(Y , X) VC( X)−1  ( X − 𝔼( X))

.

The function of x given by

L(Y ||X = x) = 𝔼(Y) + cov(Y , X) VC( X)−1  ( x − 𝔼( X))

is known as the (distribution) linear regression function. If we observe X = x then L(Y ||X = x) is our prediction of Y .

Non-linear regression with a single, real-valued predictor variable can be thought of as a special case of multiple linear

regression. Thus, suppose that X  is the predictor variable, Y  is the response variable, and that (g1, g2, ..., gn) is a

sequence of real-valued functions. We can apply the results of Exercise 17 to find the linear function of

(g1( X), g2( X), ..., gn( X)) that is closest to Y  in the mean square sense. We just replace Xi  with gi ( X) for each i.

Examples and Applications

 18. Suppose that ( X , Y ) has probability density function f ( x, y) = x + y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Find each of the

following:

𝔼( X , Y )a.

VC( X , Y )b.

 19. Suppose that ( X , Y ) has probability density function f ( x, y) = 2 ( x + y), 0 ≤ x ≤ y ≤ 1. Find each of the

following:

𝔼( X , Y )a.

VC( X , Y )b.

 20. Suppose that ( X , Y ) has probability density function f ( x, y) = 6 x 2  y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Find each of the

following:

𝔼( X , Y )a.



VC( X , Y )b.

 21. Suppose that ( X , Y ) has probability density function f ( x, y) = 15 x 2  y, 0 ≤ x ≤ y ≤ 1. Find each of the

following:

𝔼( X , Y )a.

VC( X , Y )b.

L(Y ||X)c.

L(Y |
||
X , X 2

)d.

Sketch the regression curves on the same set of axes.e.

 22. Suppose that ( X , Y , Z ) is uniformly distributed on the region {( x, y, z) ∈ ℝ3 : 0 ≤ x ≤ y ≤ z ≤ 1} Find each

of the following:

𝔼( X , Y , Z )a.

VC( X , Y , Z )b.

L( Z ||X , Y ).c.

L(Y ||X , Z ).d.

L( X ||Y , Z ).e.

 23. Suppose that X  is uniformly distributed on 0 1[ ], , and that given X , Y  is uniformly distributed on 0 X[ ], . Find

each of the following:

𝔼( X , Y )a.

VC( X , Y )b.
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