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3. Covariance and Correlation

Recall that by taking the expected value of various transformations of a random variable, we can measure many interesting

characteristics of the distribution of the variable. In this section, we will study an expected value that measures a special

type of relationship between two real-valued variables. This relationship is very important both in probability and

statistics.

Basic Theory

Definitions

As usual, our starting point is a random experiment with probability measure ℙ on an underlying sample space. Suppose

that X  and Y  are real-valued random variables for the experiment with means 𝔼( X), 𝔼(Y ) and variances var( X), var(Y ),

respectively (assumed finite). The covariance of X  and Y  is defined by

cov( X , Y ) = 𝔼(( X − 𝔼( X)) (Y − 𝔼(Y )))

and (assuming the variances are positive) the correlation of X  and Y  is defined by

cor( X , Y ) =
cov( X , Y )

sd( X) sd(Y )

Correlation is a scaled version of covariance; note that the two parameters always have the same sign (positive, negative,

or 0). When the sign is positive, the variables are said to be positively correlated; when the sign is negative, the

variables are said to be negatively correlated; and when the sign is 0, the variables are said to be uncorrelated. Note also

that correlation is dimensionless, since the numerator and denominator have the same physical units.

As these terms suggest, covariance and correlation measure a certain kind of dependence between the variables. One of our

goals is a deep understanding of this dependence. As a start, note that (𝔼( X), 𝔼(Y )) is the center of the joint distribution

of ( X , Y ), and the vertical and horizontal line through this point separate ℝ2 into four quadrants. The function

( x, y) ↦ ( x − 𝔼( X)) ( y − 𝔼(Y )) is positive on the first and third of these quadrants and negative on the second and

fourth.



Properties

The following exercises give some basic properties of covariance. The main tool that you will need is the fact that

expected value is a linear operation. Other important properties will be derived below, in the subsection on the best linear

predictor.

 1. Show that cov( X , Y ) = 𝔼( X  Y ) − 𝔼( X) 𝔼(Y ).

By Exercise 1, we see that X  and Y  are uncorrelated if and only if 𝔼( X  Y ) = 𝔼( X) 𝔼(Y ). In particular, if X  and Y  are

independent, then they are uncorrelated. However, the converse fails with a passion, as the following exercise shows.

(Other examples of dependent yet uncorrelated variables occur in the computational exercises.)

 2. Suppose that X  is uniformly distributed on the interval −a a[ ], , where a > 0, and Y = X 2 Show that X  and Y  are

uncorrelated even though Y  is a function of X  (the strongest form of dependence).

 3. Show that cov( X , Y ) = cov(Y , X).

 4. Show that cov( X , X) = var( X). Thus, covariance subsumes variance.

 5. Show that cov( X + a, Y + b) = cov( X , Y ).

 6. Show that cov(a X + b Y , Z ) = a cov( X , Z ) + b cov(Y , Z )

Thus, covariance is linear in the first argument, with the second argument fixed. By symmetry, covariance is linear in the

second argument, with the first argument fixed. Thus, the covariance operator is bi-linear. The general version of this

property is given in the following exercise.

 7. Suppose that ( X1, X2, ..., Xn) and (Y 1, Y 2, ..., Y m) are sequences of real-valued random variables for an

experiment. Show that

cov(∑
i =1
n ai  Xi , ∑

j =1
m bj  Y j ) = ∑

i =1
n ∑

j =1
m ai  bj  cov( Xi , Y j )

 8. Show that the correlation between X  and Y  is simply the covariance of the corresponding standard scores:

cor( X , Y ) = cov
(

X − 𝔼( X)

sd( X)
,

Y − 𝔼(Y )

sd(Y ) )

The Variance of a Sum

We will now show that the variance of a sum of variables is the sum of the pairwise covariances. This result is very useful

since many random variables with common distributions can be written as sums of simpler random variables (see in

particular the binomial distribution and hypergeometric distribution below).



 9. Suppose that ( X1, X2, ..., Xn) is a sequence of real-valued random variables. Use Exercise 3, Exercise 4, and

Exercise 6 to show that

var(∑
i =1
n Xi ) = ∑

i =1
n ∑

j =1
n cov( Xi , X j ) = ∑

i =1
n var( Xi ) + 2 ∑

i < j
cov( Xi , X j )

Note that the variance of a sum can be greater, smaller, or equal to the sum of the variances, depending on the pure

covariance terms. As a special case of Exercise 9, when n = 2, we have

var( X + Y ) = var( X) + var(Y ) + 2 cov( X , Y )

 10. Suppose that ( X1, X2, ..., Xn) is a sequence of pairwise uncorrelated, real-valued random variables. Show that

var(∑
i =1
n Xi ) = ∑

i =1
n var( Xi )

Note that the result in the previous exercise holds, in particular, if the random variables are mutually independent.

 11. Suppose that X  and Y  are real-valued random variables. Show that

var( X + Y ) + var( X − Y ) = 2 var( X) + 2 var(Y ).

 12. Suppose that X  and Y  are real-valued random variables with var( X) = var(Y ). Show that X + Y  and X − Y  are

uncorrelated.

Random Samples

In the following exercises, suppose that ( X1, X2, ...) is a sequence of independent, real-valued random variables with a

common distribution that has mean μ and standard deviation σ > 0. (Thus, the variables form a random sample from the

common distribution).

 13. Let Y n = ∑
i =1
n Xi . Show that

𝔼(Y n) = n μa.

var(Y n) = n σ 2b.

 14. Let Mn =
Y n
n = 1

n  ∑i =1
n Xi . Thus, Mn is the sample mean. Show that

𝔼( Mn) = μa.

var( Mn) = 𝔼(( Mn − μ)2
) = σ 2

n , so var( Mn) → 0 as n → ∞.b.

ℙ(||Mn − μ|| > ε) → 0 as n → ∞ for any ε > 0. (Hint: Use Chebyshev's inequality).c.

Part (b) of the last exercise means that Mn → μ as n → ∞ in mean square. Part (c) means that Mn → μ as n → ∞ in

probability. These are both versions of the weak law of large numbers, one of the fundamental theorems of probability.

 15. Let Z n =
Y n −n  μ

n√  σ
. Thus, Z n is the standard score associated with Y n. Show that

Z n =
Mn − μ

σ / n√
 so that Z n is also the standard score associated with Mn.a.



𝔼( Z n) = 0b.

var( Z n) = 1c.

The central limit theorem, the other fundamental theorem of probability, states that the distribution of Z n converges to

the standard normal distribution as n → ∞

Events

Suppose that A and B are events in a random experiment. The covariance and correlation of A and B are defined to be the

covariance and correlation, respectively, of their indicator random variables 1( A) and 1( B).

 16. Show that

cov( A, B) = ℙ( A∩B) − ℙ( A) ℙ( B)a.

cor( A, B) =
ℙ( A∩ B) −ℙ( A) ℙ( B)

ℙ( A) (1−ℙ( A)) ℙ( B) (1−ℙ( B))√

b.

In particular, note that A and B are positively correlated, negatively correlated, or independent, respectively (as defined in

the section on conditional probability) if and only if the indicator variables of A and B are positively correlated,

negatively correlated, or uncorrelated, as defined in this section.

 17. Show that

cov( A, Bc ) = −cov( A, B)a.

cov( Ac , Bc ) = cov( A, B)b.

 18. Suppose that A ⊆ B Show that

cov( A, B) = ℙ( A) (1 − ℙ( B))a.

cor( A, B) =
ℙ( A) (1−ℙ( B))

ℙ( B) (1−ℙ( A))√
b.

The Best Linear Predictor

What linear function of X  is closest to Y  in the sense of minimizing mean square error? The question is fundamentally

important in the case where random variable X  (the predictor variable) is observable and random variable Y  (the

response variable) is not. The linear function can be used to estimate Y  from an observed value of X . Moreover, the

solution will show that covariance and correlation measure the linear relationship between X  and Y . To avoid trivial

cases, let us assume that var( X) > 0 and var(Y ) > 0, so that the random variables really are random.



Let MSE(a, b) denote the mean square error when a X + b is used as an estimator of Y  (as a function of the parameters a

and b):

MSE(a, b) = 𝔼((Y − (a X + b))
2

)

.

 19. Show that

MSE(a, b) = 𝔼(Y 2
) − 2 a 𝔼( X  Y ) − 2 b 𝔼(Y ) + a2  𝔼(X 2

) + 2 a b 𝔼( X) + b2

 20. Use basic calculus to show that MSE(a, b) is minimized when

a =
cov( X , Y )

var( X)
, b = 𝔼(Y ) −

cov( X , Y )

var( X)
 𝔼( X)

Thus, the best linear predictor of Y  given X  is the random variable L(Y ||X) given by

L(Y ||X) = 𝔼(Y ) +
cov( X , Y )

var( X)
 ( X − 𝔼( X))

 21. Show that the minimum value of the mean square error function MSE, is

𝔼((Y − L(Y ||X))2
) = var(Y ) (1 − cor( X , Y )2

)

 22. From the last exercise, verify the following important properties:

−1 ≤ cor( X , Y ) ≤ 1a.

−sd( X) sd(Y ) ≤ cov( X , Y ) ≤ sd( X) sd(Y )b.

cor( X , Y ) = 1 if and only if Y = a X + b with probability 1 for some constants a > 0 and b.c.

cor( X , Y ) = −1 if and only if Y = a X + b with probability 1 for some constants a < 0 and b.d.

These exercises show clearly that cov( X , Y ) and cor( X , Y ) measure the linear association between X  and Y .

Recall that the best constant predictor of Y , in the sense of minimizing mean square error, is 𝔼(Y ) and the minimum

value of the mean square error for this predictor is var(Y ). Thus, the difference between the variance of Y  and the mean

square error in Exercise 21 is the reduction in the variance of Y  when the linear term in X  is added to the predictor.



 23. Show that var(Y ) − 𝔼((Y − L(Y ||X))2
) = var(Y ) cor( X , Y )2 The fraction of the reduction is cor( X , Y )2, and

hence this quantity is called the (distribution) coefficient of determination.

Now let

L(Y ||X = x) = 𝔼(Y ) +
cov( X , Y )

var( X)
 ( x − 𝔼( X)), x ∈ ℝ

The function x ↦ L(Y ||X = x) is known as the distribution regression function for Y  given X , and its graph is known

as the distribution regression line. Note that the regression line passes through (𝔼( X), 𝔼(Y )), the center of the joint

distribution.

 24. Show that 𝔼( L(Y ||X)) = 𝔼(Y ).

However, the choice of predictor variable and response variable is crucial.

 25. Show that regression line for Y  given X  and the regression line for X  given Y  are not the same line, except in the

trivial case where the variables are perfectly correlated. However, the coefficient of determination is the same,

regardless of which variable is the predictor and which is the response.

 26. Suppose that A and B are events in a random experiment with 0 < ℙ( A) < 1 and 0 < ℙ( B) < 1. Show that

cor( A, B) = 1 if and only ℙ( A ∖ B) = 0 and ℙ( B ∖ A) = 0 (That is, A and B are equivalent.)a.

cor( A, B) = −1 if and only ℙ( A ∖ Bc ) = 0 and ℙ( Bc ∖ A) = 0 (That is, A and Bc  are equivalent.)b.

The concept of best linear predictor is more powerful than might first appear, because it can be applied to transformations

of the variables. Specifically, suppose that X  and Y  are random variables for our experiment, taking values in general

spaces S  and T , respectively. Suppose also that g and h are real-valued functions defined on S  and T , respectively. We

can find L(h(Y )||g( X)), the linear function of g( X) that is closest to h(Y ) in the mean square sense. The results of this

subsection apply, of course, with g( X) replacing X  and h(Y ) replacing Y .

 27. Suppose that Z  is another real-valued random variable for the experiment and that c is a constant. Show that

L(Y + Z ||X) = L(Y ||X) + L( Z ||X)a.

L(c Y |
||X) = c L(Y ||X)b.

There are several extensions and generalizations of the ideas in the subsection:

The corresponding statistical problem of estimating a and b, when these distribution parameters are unknown, is

considered in the section on Sample Covariance and Correlation.

The problem finding the function of X  (using all reasonable functions, not just linear ones) that is closest to Y  in

the mean square error sense is considered in the section on Conditional Expected Value.

The best linear prediction problem when the predictor and response variables are random vectors is considered in

the section on Expected Value and Covariance Matrices.



Examples and Applications

Uniform Distributions

 28. Suppose that ( X , Y ) is uniformly distributed on the region S ⊆ ℝ2. Find cov( X , Y ) and cor( X , Y ) and

determine whether the variables are independent in each of the following cases:

S = a b[ ], × c d[ ],  where a < b and c < da.

S = {( x, y) ∈ ℝ2 : −a ≤ y ≤ x ≤ a} where a > 0.b.

S = {( x, y) ∈ ℝ2 : x 2
+ y 2 ≤ r 2

} where r > 0.c.

 29. In the bivariate uniform experiment, select each of the regions below in turn. For each region, run the simulation

2000 times, updating every 10 runs. Note the value of the correlation and the shape of the cloud of points in the

scatterplot. Compare with the results in the last exercise.

Squarea.

Triangleb.

Circlec.

 30. Suppose that X  is uniformly distributed on the interval 0 1( ),  and that given X = x, Y  is uniformly distributed

on the interval 0 x( ), .

Find cov( X , Y )a.

Find cor( X , Y )b.

Find L(Y ||X).c.

Find L( X ||Y )d.

Dice

Recall that a standard die is a six-sided die. A fair die is one in which the faces are equally likely. An ace-six flat die is

a standard die in which faces 1 and 6 have probability 1

4
 each, and faces 2, 3, 4, and 5 have probability 1

8
 each.

 31. A pair of standard, fair dice are thrown and the scores ( X1, X2) recorded. Let Y = X1 + X2 denote the sum of the

scores, U = min {X1, X2} the minimum scores, and V = max {X1, X2} the maximum score. Find the covariance

and correlation of each of the following pairs of variables:

( X1, X2)a.

( X1, Y )b.

( X1, U)c.

(U , V)d.

(U , Y )e.



 32. Suppose that n fair dice are thrown. Find the mean and variance of each of the following variables:

The sum of the scores.a.

The average of the scores.b.

 33. In the dice experiment, select the following random variables. In each case, increase the number of dice and

observe the size and location of the density function and the mean-standard deviation bar. With n = 20 dice, run the

experiment 1000 times, updating every 10 runs, and note the apparent convergence of the empirical moments to the

distribution moments.

The sum of the scores.a.

The average of the scores.b.

 34. Repeat Exercise 32 for ace-six flat dice.

 35. Repeat Exercise 33 for ace-six flat dice.

 36. A pair of fair dice are thrown and the scores ( X1, X2) recorded. Let Y = X1 + X2 denote the sum of the scores,

U = min {X1, X2} the minimum score, and V = max {X1, X2} the maximum score. Find each of the following:

L(Y ||X1).a.

L(U ||X1).b.

L(V ||X1).c.

Bernoulli Trials

Recall that a Bernoulli trials process is a sequence ( X1, X2, ...) of independent, identically distributed indicator

random variables. In the usual language of reliability, Xi  denotes the outcome of trial i, where 1 denotes success and 0

denotes failure. The probability of success p = ℙ( Xi = 1) is the basic parameter of the process. The process is named for

James Bernoulli. A separate chapter on the Bernoulli Trials explores this process in detail.

The number of successes in the first n trials is Y n = ∑
i =1
n Xi . Recall that this random variable has the binomial

distribution with parameters n and p, which has probability density function

ℙ(Y n = k) = (
n

k ) p
k  (1 − p)n−k , k ∈ {0, 1, ..., n}



 37. Show that

𝔼(Y n) = n pa.

var(Y n) = n p (1 − p)b.

 38. In the binomial coin experiment, select the number of heads. Vary n and p and note the shape of the density

function and the size and location of the mean-standard deviation bar. For selected values of n and p, run the

experiment 1000 times, updating every 10 runs, and note the apparent convergence of the sample mean and standard

deviation to the distribution mean and standard deviation.

The proportion of successes in the first n trials is Mn =
Y n
n . This random variable is sometimes used as a statistical

estimator of the parameter p, when the parameter is unknown.

 39. Show that

𝔼( Mn) = pa.

var( Mn) =
p (1− p)

nb.

 40. In the binomial coin experiment, select the proportion of heads. Vary n and p and note the shape of the density

function and the size and location of the mean-standard deviation bar. For selected values of n and p, run the

experiment 1000 times, updating every 10 runs, and note the apparent convergence of the sample mean and standard

deviation to the distribution mean and standard deviation.

The Hypergeometric Distribution

Suppose that a population consists of m  objects; r  of the objects are type 1 and m − r  are type 0. A sample of n objects

is chosen at random, without replacement. Let Xi  denote the type of the i th object selected. Recall that ( X1, X2, ..., Xn)

is a sequence of identically distributed (but not independent) indicator random variables. In fact the sequence is

exchangeable, so that in particular ℙ( Xi = 1) = r
m  for each i and ℙ( Xi = 1, X j = 1) = r

m  
r −1

m −1
 for distince i and j.

Let Y n denote the number of type 1 objects in the sample, so that Y n = ∑
i =1
n Xi . Recall that this random variable has

the hypergeometric distribution, which has probability density function.

ℙ(Y n = k) =
(

r
k ) (

m − r
n − k )

(
m
n )

, k ∈ {0, 1, ..., n}

.

 41. Show that for distinct i and j,

cov( Xi , X j ) = − r
m  (1 − r

m) 
1

m −1
a.

cor( Xi , X j ) = − 1

m −1
b.

Note that the event of a type 1 object on draw i and the event of a type 1 object on draw j are negatively correlated, but



the correlation depends only on the population size and not on the number of type 1 objects. Note also that the correlation

is perfect if m = 2. Think about these result intuitively.

 42. Show that

𝔼(Y n) = n  rma.

var(Y n) = n  rm  (1 − r
m) 

m −n

m −1
b.

 43. In the ball and urn experiment, select sampling without replacement. Vary m , r , and n and note the shape of the

density function and the size and location of the mean-standard deviation bar. For selected values of the parameters,

run the experiment 1000 times, updating every 10 runs, and note the apparent convergence of the sample mean and

standard deviation to the distribution mean and standard deviation.

Miscellaneous Exercises

 44. Suppose that X  and Y  are real-valued random variables with cov( X , Y ) = 3. Find cov(2 X − 5, 4 Y + 2).

 45. Suppose X  and Y  are real-valued random variables with var( X) = 5, var(Y ) = 9, and cov( X , Y ) = −3. Find

var(2 X + 3 Y − 7).

 46. Suppose that X  and Y  are independent, real-valued random variables with var( X) = 6 and var(Y ) = 8. Find

var(3 X − 4 Y + 5).

 47. Suppose that A and B are events in an experiment with ℙ( A) = 1

2
, ℙ( B) = 1

3
, and ℙ( A∩B) = 1

8
. Find the

covariance and correlation between A and B.

 48. Suppose that ( X , Y ) has probability density function f ( x, y) = x + y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

Find cov( X , Y )a.

Find cor( X , Y )b.

Find L(Y ||X).c.

Find L( X ||Y ).d.

 49. Suppose that ( X , Y ) has probability density function f ( x, y) = 2 ( x + y), 0 ≤ x ≤ y ≤ 1.

Find cov( X , Y )a.

Find cor( X , Y )b.

Find L(Y ||X).c.

Find L( X ||Y ).d.



 50. Suppose again that ( X , Y ) has probability density function f ( x, y) = 2 ( x + y), 0 ≤ x ≤ y ≤ 1.

Find cov( X 2, Y )a.

Find cor( X 2, Y )b.

Find L(Y |
||X

2
).c.

Which predictor of Y  is better, the one based on X  or the one based on X 2?d.

 51. Suppose that ( X , Y ) has probability density function f ( x, y) = 6 x 2  y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

Find cov( X , Y )a.

Find cor( X , Y )b.

Find L(Y ||X).c.

Find L( X ||Y ).d.

 52. Suppose that ( X , Y ) has probability density function f ( x, y) = 15 x 2  y, 0 ≤ x ≤ y ≤ 1.

Find cov( X , Y )a.

Find cor( X , Y )b.

Find L(Y ||X).c.

Find L( X ||Y ).d.

 53. Suppose again that ( X , Y ) has probability density function f ( x, y) = 15 x 2  y, 0 ≤ x ≤ y ≤ 1.

Find cov( X√ , Y )a.

Find cor( X√ , Y )b.

Find L(Y |
||

X√ ).c.

Which of the predictors of Y  is better, the one based on X  of the one based on X√ ?d.

Vector Space Concepts

Covariance is closely related to the concept of inner product in the theory of vector spaces. This connection can help

illustrate many of the properties of covariance from a different point of view.

In this section, our vector space V2 consists of all real-valued random variables defined on a fixed probability space

( Ω, F, ℙ) (that is, relative to the same random experiment) that have finite second moment. Recall that two random

variables are equivalent if they are equal with probability 1. As usual, we consider two such random variables as the same



vector, so that technically, our vector space consists of equivalence classes under this equivalence relation. The addition

operator corresponds to the usual addition of two real-valued random variables, and the operation of scalar

multiplication corresponds to the usual multiplication of a real-valued random variable by a real (non-random) number.

Inner Product

If X  and Y  are random variables in V2, we define the inner product of X  and Y  by

〈X , Y 〉 = 𝔼( X  Y )

The following exercise gives results that are analogs of the basic properties of covariance given above, and show that this

definition really does give an inner product on the vector space

 54. Show that

〈X , Y 〉 = 〈Y , X〉a.

〈X , X〉 ≥ 0b.

〈X , X〉 = 0 if and only if ℙ( X = 0) = 1 (so that X  is equivalent to 0).c.

〈a X , Y 〉 = a 〈X , Y 〉 for any constant a.d.

〈X + Y , Z 〉 = 〈X , Z 〉 + 〈Y , Z 〉e.

Covariance and correlation can easily be expressed in terms of this inner product. The covariance of two random variables

is the inner product of the corresponding centered variables. The correlation is the inner product of the corresponding

standard scores.

 55. Show that

cov( X , Y ) = 〈X − 𝔼( X), Y − 𝔼(Y )〉a.

cor( X , Y ) = 〈
X −𝔼( X )

sd( X )
,

Y −𝔼(Y )

sd(Y )
〉b.

The norm associated with the inner product is the 2-norm studied in the last section, and corresponds to the root mean

square operation on a random variable. This fact is a fundamental reason why the 2-norm plays such a special, honored

role; of all the k-norms, only the 2-norm corresponds to an inner product. In turn, this is one of the reasons that root

mean square difference is of fundamental importance in probability and statistics.

 56. Show that 〈X , X〉 = ‖X‖2
2 = 𝔼( X 2

).

Projection

Let X  and Y  be random variables in V2

 57. Show that the following set is a subspace of V2. In fact, it is the subspace generated by X  and 1.

W = {a X + b : (a ∈ ℝ) and (b ∈ ℝ)}

 58. Show that the best linear predictor of Y  given X  can be characterized as the projection of Y  onto the subspace W.



That is, show that L(Y ||X) is the only random variable W ∈ W with the property that Y − W  is perpendicular to W.

Specifically, find W  such that satisfies the following two conditions:

〈Y − W , X〉 = 0a.

〈Y − W , 1〉 = 0b.

Hölder's Inequality

The next exercise gives Hölder's inequality, named for Otto Hölder.

 59. Suppose that j > 1, k > 1, and 1

j
+

1

k
= 1. Show that 〈||X ||, ||Y ||〉 ≤ ‖X‖ j  ‖Y ‖k  using the steps below:

Show that S = {( x, y) ∈ ℝ2 : ( x ≥ 0) and ( y ≥ 0)} is a convex set and g( x, y) = x 1 / j  y 1 /k  is concave on S .a.

Use (a) and Jensen's inequality to show that if U  and V  are nonnegative random variables then

𝔼(U 1 / j  V 1 /k
) ≤ 𝔼(U)1 / j  𝔼(V)1 /k

b.

In (b), let U = ||X ||
j  and V = ||Y ||

kc.

In the context of the last exercise, j and k are called conjugate exponents. If we let j = k = 2 in Hölder's inequality,

then we get the Cauchy-Schwarz inequality, named for Augustin Cauchy and Karl Schwarz. In turn, this is equivalent

to the inequalities in Exercise 22.

𝔼(|
||
X  Y |

||) ≤ 𝔼( X 2
)√   𝔼(Y 2

)√

 60. Suppose that ( X , Y ) has probability density function f ( x, y) = x + y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Verify Hölder's

inequality in the following cases:

j = k = 2a.

j = 3, k = 3

2
b.

 61. Suppose that j and k are conjugate exponents.

Show that k =
j

j −1
.a.

Show that k ⏐↓1 as j ↑∞b.

Theorems Revisited

The following exercise is an analog of the result in Exercise 11.

 62. Prove the parallelogram rule:

‖X + Y ‖2
2

+ ‖X − Y ‖2
2 = 2 ‖X‖2

2
+ 2 ‖Y ‖2

2



The following exercise is an analog of the result in Exercise 10.

 63. Prove the Pythagorean theorem, named for Pythagoras of course: if ( X1, X2, ..., Xn) is a sequence of

real-valued random variables with 〈Xi , X j 〉 = 0 for i ≠ j then

‖‖∑
i =1
n Xi

‖‖2

2
= ∑

i =1
n ‖Xi ‖2

2
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