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5. Conditional Expected Value

As usual, our starting point is a random experiment with probability measure ℙ on a sample space Ω. Suppose that X  is

a random variable taking values in a set S  and that Y  is a random variable taking values in T ⊆ ℝ. In this section, we

will study the conditional expected value of Y  given X , a concept of fundamental importance in probability. As we will

see, the expected value of Y  given X  is the function of X  that best approximates Y  in the mean square sense. Note that X

is a general random variable, not necessarily real-valued. In this section, we will assume that all real-valued random

variables occurring in expected values have finite second moment.

Basic Theory

The Elementary Definition

Note that we can think of ( X , Y ) as a random variable that takes values in a subset of S×T . Suppose first that S ⊆ ℝn for

some n ∈ ℕ+, and that ( X , Y ) has a (joint) continuous distribution with probability density function f . Recall that the

(marginal) probability density function g of X  is given by

g( x) = ∫
T

f ( x, y)d y, x ∈ S

and that the conditional probability density function of Y  given X = x is given by

h( y||x) =
f ( x, y)

g( x)
, x ∈ S , y ∈ T

Thus, the conditional expected value of Y  given X = x is simply the mean computed relative to the conditional

distribution:

𝔼(Y ||X = x) = ⌠
⌡T

y h( y||x)d y, x ∈ S

Of course, the conditional mean of Y  depends on the given value x of X . Temporarily, let v denote the function from S

into ℝ defined by

v( x) = 𝔼(Y ||X = x), x ∈ S

The function v is sometimes refereed to as the regression function of Y  based on X . The random variable v( X) is called

the conditional expected value of Y  given X  and is denoted 𝔼(Y ||X). The results and definitions above would be exactly

the same if ( X , Y ) has a joint discrete distribution, except that sums would replace the integrals. Intuitively, we treat X

as known, and therefore not random, and we then average Y  with respect to the probability distribution that remains.

The General Definition

The random variable 𝔼(Y ||X) satisfies a critical property that characterizes it among all functions of X .



 1. Suppose that r  is a function from S  into ℝ. Use the change of variables theorem for expected value to show that

𝔼(r ( X) 𝔼(Y ||X)) = 𝔼(r ( X) Y )

In fact, the result in Exercise 1 can be used as a definition of conditional expected value, regardless of the type of the

distribution of ( X , Y ). Thus, generally we define 𝔼(Y ||X) to be the random variable that satisfies the condition in

Exercise 1 and is of the form 𝔼(Y ||X) = v( X) for some function v from S  into ℝ. Then we define 𝔼(Y ||X = x) to be v( x)

for x ∈ S . (More technically, 𝔼(Y ||X) is required to be measurable with respect to X .)

Properties

Our first consequence of Exercise 1 is a formula for computing the expected value of Y .

 2. By taking r  to be the constant function 1 in Exercise 1, show that 𝔼(𝔼(Y ||X)) = 𝔼(Y )

Aside from the theoretical interest, the result in Exercise 2 is often a good way to compute 𝔼(Y ) when we know the

conditional distribution of Y  given X . We say that we are computing the expected value of Y  by conditioning on X .

 3. Show that, in light of Exercise 2, the condition in Exercise 1 can be restated as follows: For any function

r : S → ℝ, the random variables Y − 𝔼(Y ||X) and r ( X) are uncorrelated.

The next exercise show that the condition in Exercise 1 characterizes 𝔼(Y ||X)

 4. Suppose that u( X) and v( X) satisfy the condition in Exercise 1 and hence also the results in Exercise 2 and

Exercise 3. Show that u( X) and v( X) are equivalent:

First show that var(u( X) − v( X)) = 0a.

Then show that ℙ(u( X) = v( X)) = 1.b.

 5. Suppose that s : S → ℝ. Use the characterization in Exercise 1 to show that

𝔼(s( X) Y |
||
X) = s( X) 𝔼(Y ||X)

This result makes intuitive sense: if we know X , then we know any (deterministic) function of X . Any such function acts

like a constant in terms of the conditional expected value with respect to X . The following rule generalizes this result and

is sometimes referred to as the substitution rule for conditional expected value.

 6. Suppose that s : S×T → ℝ. Show that

𝔼(s( X , Y )||X = x) = 𝔼(s( x, Y )||X = x)

In particular, it follows from Exercise 5 or Exercise 6 that 𝔼(s( X)||X) = s( X). At the opposite extreme, we have the result

in the next exercise. If X  and Y  are independent, then knowledge of X  gives no information about Y  and so the

conditional expected value with respect to X  is the same as the ordinary (unconditional) expected value of Y .

 7. Suppose that X  and Y  are independent. Use the characterization in Exercise 1 to show that

𝔼(Y ||X) = 𝔼(Y )

Use the general definition to establish the properties in the following exercises, where Y  and Z  are real-valued random



variables and c is a constant. Note that these are analogies of basic properties of ordinary expected value. Every type of

expected value must satisfy two critical properties: linearity and monotonicity.

 8. Show that 𝔼(Y + Z ||X) = 𝔼(Y ||X) + 𝔼( Z ||X).

 9. Show that 𝔼(c Y |
||X) = c 𝔼(Y ||X).

 10. Show that if Y ≥ 0 with probability 1, then 𝔼(Y ||X) ≥ 0 with probability 1.

 11. Show that if Y ≤ Z  with probability 1, then 𝔼(Y ||X) ≤ 𝔼( Z ||X) with probability 1.

 12. Show that ||𝔼(Y ||X)|| ≤ 𝔼(||Y ||||X) with probability 1.

Suppose now that Z  is real-valued and that X  and Y  are random variables (all defined on the same probability space, of

course). The following exercise gives a consistency condition of sorts. Iterated conditional expected values reduce to a

single conditional expected value with respect to the minimum amount of information:

 13. Show that

𝔼(𝔼( Z ||X , Y )||X) = 𝔼(𝔼( Z ||X)||X , Y ) = 𝔼( Z ||X)

Conditional Probability

The conditional probability of an event A, given random variable X , is a special case of the conditional expected value.

As usual, let 1( A) denote the indicator random variable of A. We define

ℙ( A||X) = 𝔼(1( A)||X)

The properties above for conditional expected value, of course, have special cases for conditional probability.

 14. Show that ℙ( A) = 𝔼(ℙ( A||X)).

Again, the result in the previous exercise is often a good way to compute ℙ( A) when we know the conditional probability

of A given X . We say that we are computing the probability of A by conditioning on X . This is a very compact and

elegant version of the conditioning result given first in the section on Conditional Probability in the chapter on

Probability Spaces and later in the section on Discrete Distributions in the Chapter on Distributions.

The Best Predictor

The next two exercises show that, of all functions of X , 𝔼(Y ||X) is the best predictor of Y , in the sense of minimizing the

mean square error. This is fundamentally important in statistical problems where the predictor vector X  can be observed

but not the response variable Y .

 15. Let v( X) = 𝔼(Y ||X) and let u : S → ℝ. By adding and subtracting v( X), expanding, and using the result of

Exercise 3, show that

𝔼((Y − u( X))2
) = 𝔼((Y − v( X))2

) + 𝔼((v( X) − u( X))2
)

 16. Use the result of the last exercise to show that if u : S → ℝ, then



𝔼((𝔼(Y ||X) − Y )2
) ≤ 𝔼((u( X) − Y )2

)

and equality holds if and only if u( X) = 𝔼(Y ||X) with probability 1.

Suppose now that X  is real-valued. In the section on covariance and correlation, we found that the best linear predictor of

Y  based on X  is

L(Y ||X) = 𝔼(Y ) +
cov( X , Y )

var( X)
 ( X − 𝔼( X))

On the other hand, 𝔼(Y ||X) is the best predictor of Y  among all functions of X . It follows that if 𝔼(Y ||X) happens to be a

linear function of X  then it must be the case that 𝔼(Y ||X) = L(Y ||X)

 17. Show that cov( X , 𝔼(Y ||X)) = cov( X , Y )

 18. Show directly that if 𝔼(Y ||X) = a X + b then

a =
cov( X , Y )

var( X )
a.

b = 𝔼(Y ) −
cov( X , Y )

var( X )
 𝔼( X)b.

Conditional Variance

The conditional variance of Y  given X  is naturally defined as follows:

var(Y ||X) = 𝔼((Y − 𝔼(Y ||X))2|
||
X)

 19. Show that var(Y ||X) = 𝔼(Y 2|
||
X) − 𝔼(Y ||X)2.

 20. Show that var(Y ) = 𝔼(var(Y ||X)) + var(𝔼(Y ||X)).

Again, the result in the previous exercise is often a good way to compute var(Y ) when we know the conditional

distribution of Y  given X . We say that we are computing the variance of Y  by conditioning on X .

Let us return to the study of predictors of the real-valued random variable Y , and compare the three predictors we have

studied in terms of mean square error.

First, the best constant predictor of Y  is μ = 𝔼(Y ) with mean square error var(Y ) = 𝔼((Y − μ)2
)1.

Next, if X  is another real-valued random variable, then as we showed in the section on covariance and correlation,

the best linear predictor of Y  based on X  is

L(Y ||X) = 𝔼(Y ) +
cov( X , Y )

var( X)
 ( X − 𝔼( X))

with mean square error 𝔼((Y − L(Y ||X))2
) = var(Y ) (1 − cor( X , Y )2

).

2.

Finally, if X  is a general random variable, then as we have shown in this section, the best overall predictor of Y

based on X  is 𝔼(Y ||X) with mean square error 𝔼(var(Y ||X)) = var(Y ) − var(𝔼(Y ||X)).

3.



Examples and Applications

 21. Suppose that ( X , Y ) has probability density function f ( x, y) = x + y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

Find L(Y ||X).a.

Find 𝔼(Y ||X).b.

Graph L(Y ||X = x) and 𝔼(Y ||X = x) as functions of x, on the same axes.c.

Find var(Y ).d.

Find var(Y ) (1 − cor( X , Y )2
).e.

Find var(Y ) − var(𝔼(Y ||X)).f.

 22. Suppose that ( X , Y ) has probability density function f ( x, y) = 2 ( x + y), 0 ≤ x ≤ y ≤ 1.

Find L(Y ||X).a.

Find 𝔼(Y ||X).b.

Graph L(Y ||X = x) and 𝔼(Y ||X = x) as functions of x, on the same axes.c.

Find var(Y ).d.

Find var(Y ) (1 − cor( X , Y )2
).e.

Find var(Y ) − var(𝔼(Y ||X)).f.

 23. Suppose that ( X , Y ) has probability density function f ( x, y) = 6 x 2  y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

Find L(Y ||X).a.

Find 𝔼(Y ||X).b.

Graph L(Y ||X = x) and 𝔼(Y ||X = x) as functions of x, on the same axes.c.

Find var(Y ).d.

Find var(Y ) (1 − cor( X , Y )2
).e.

Find var(Y ) − var(𝔼(Y ||X)).f.

 24. Suppose that ( X , Y ) has probability density function f ( x, y) = 15 x 2  y, 0 ≤ x ≤ y ≤ 1.

Find L(Y ||X).a.

Find 𝔼(Y ||X).b.

Graph L(Y ||X = x) and 𝔼(Y ||X = x) as functions of x, on the same axes.c.

Find var(Y ).d.

Find var(Y ) (1 − cor( X , Y )2
).e.

Find var(Y ) − var(𝔼(Y ||X)).f.



 25. Suppose that X , Y , and Z  are real-valued random variables with 𝔼(Y ||X) = X 3 and 𝔼( Z ||X) = 1

1+ X 2
. Find

𝔼(Y  e X − Z  sin( X)|||X).

Uniform Distributions

 26. Suppose that ( X , Y ) is uniformly distributed on a rectangular region S = a b[ ], × c d[ ], ⊆ ℝ2. Find 𝔼(Y ||X).

 27. In the bivariate uniform experiment, select the square in the list box. Run the simulation 2000 times, updating

every 10 runs. Note the relationship between the cloud of points and the graph of the regression function.

 28. Suppose that ( X , Y ) is uniformly distributed on a triangular region T = {( x, y) ∈ ℝ2 : −a ≤ x ≤ y ≤ a}, where

a > 0 is a parameter. Find 𝔼(Y ||X).

 29. In the bivariate uniform experiment, select the triangle in the list box. Run the simulation 2000 times, updating

every 10 runs. Note the relationship between the cloud of points and the graph of the regression function.

 30. Suppose that X  is uniformly distributed on 0 1[ ], , and that given X , Y  is uniformly distributed on 0 X[ ], . Find

each of the following:

𝔼(Y ||X)a.

𝔼(Y )b.

var(Y ||X)c.

var(Y )d.

Coins and Dice

 31. A pair of fair dice are thrown, and the scores ( X1, X2) recorded. Let Y = X1 + X2 denote the sum of the scores

and U = min {X1, X2} the minimum score. Find each of the following:

𝔼(Y ||X1)a.

𝔼(U ||X1)b.

𝔼(Y ||U)c.

𝔼( X2||X1)d.

 32. A box contains 10 coins, labeled 0 to 9. The probability of heads for coin i is i

9
. A coin is chosen at random from

the box and tossed. Find the probability of heads. This problem is an example of Laplace's rule of succession,



Random Sums of Random Variables

Suppose that X = ( X1, X2, ...) is a sequence of independent and identically distributed real-valued random variables. We

will denote the common mean, variance, and moment generating function, respectively, by: μ = 𝔼( Xi ), σ 2 = var( Xi ),

and G(t) = 𝔼(e t  X i
). Let

Y n = ∑
i =1
n Xi , n ∈ ℕ

so that Y = (Y 0, Y 1, ...) is the partial sum process associated with X . Suppose now that N  is a random variable taking

values in ℕ, independent of X. Then

Y N = ∑
i =1
N Xi

is a random sum of random variables; the terms in the sum are random, and the number of terms is random. This type of

variable occurs in many different contexts. For example, N  might represent the number of customers who enter a store in

a given period of time, and Xi  the amount spent by the customer i.

 33. Show that

𝔼(Y N ||N ) = N  μa.

𝔼(Y N ) = 𝔼( N ) μb.

Wald's equation, named for Abraham Wald, is a generalization of the result in the previous exercise to the case where N

is not necessarily independent of X, but rather is a stopping time for X. Wald's equation is discussed in the section on

Partial Sums in the chapter on Random Samples.

 34. Show that

var(Y N ||N ) = N  σ 2a.

var(Y N ) = 𝔼( N ) σ 2
+ var( N ) μ2b.

 35. Let H  denote the probability generating function of N . Show that the moment generating function of Y N  is H ∘ G

.

𝔼(e t  Y N |
|
||N ) = G(t) Na.

𝔼(e t  Y N
) = H(G(t))b.

 36. In the die-coin experiment, a fair die is rolled and then a fair coin is tossed the number of times showing on the

die. Let N  denote the die score and Y  the number of heads.

Find the conditional distribution of Y  given N .a.

Find 𝔼(Y ||N ).b.

Find var(Y ||N ).c.

Find 𝔼(Y ).d.



Find var(Y ).e.

 37. Run the die-coin experiment 1000 times, updating every 10 runs. Note the apparent convergence of the empirical

mean and standard deviation to the distribution mean and standard deviation.

 38. The number of customers entering a store in a given hour is a random variable with mean 20 and standard

deviation 3. Each customer, independently of the others, spends a random amount of money with mean $50 and

standard deviation $5. Find the mean and standard deviation of the amount of money spent during the hour.

 39. A coin has a random probability of heads V  and is tossed a random number of times N . Suppose that V  is

uniformly distributed on 0 1[ ], ; N  has the Poisson distribution with parameter a > 0; and V  and N  are independent.

Let Y  denote the number of heads. Compute the following:

𝔼(Y ||N , V)a.

𝔼(Y ||N )b.

𝔼(Y ||V)c.

𝔼(Y )d.

var(Y ||N , V)e.

var(Y )f.

Mixtures of Distributions

Suppose that X = ( X1, X2, ...) is a sequence of real-valued random variables. Let μi = 𝔼( Xi ), σi
2 = var( Xi ), and

Mi (t) = 𝔼(e t  X i
) for i ∈ ℕ+. Suppose also that N  is a random variable taking values in ℕ+, independent of X. Denote

the probability density function of N  by pi = ℙ( N = i) for i ∈ ℕ+. The distribution of the random variable X N  is a

mixture of the distributions of X = ( X1, X2, ...), with the distribution of N  as the mixing distribution.

 40. Show that 𝔼( X N ||N ) = μN

 41. Show that 𝔼( X N ) = ∑
i =1
∞ pi  μi .

 42. Show that var( X N ) = ∑
i =1
∞ pi  (σi

2
+ μi

2
) − ∑

i =1
∞ pi  μi

2
.

 43. Show that 𝔼(e t  X N
) = ∑

i =1
∞ pi  Mi (t)

 44. In the coin-die experiment, a biased coin is tossed with probability of heads 1

3
. If the coin lands tails, a fair die is

rolled; if the coin lands heads, an ace-six flat die is rolled (faces 1 and 6 have probability 1

4
 each, and faces 2, 3, 4, 5

have probability 1

8
 each). Find the mean and standard deviation of the die score.



 45. Run the coin-die experiment 1000 times, updating every 10 runs. Note the apparent convergence of the empirical

mean and standard deviation to the distribution mean and standard deviation.

Vector Space Concepts

Conditional expectation can be interpreted in terms vector of space concepts. This connection can help illustrate many of

the properties of conditional expectation from a different point of view.

Recall that the vector space V2 consists of all real-valued random variables defined on a fixed sample space Ω (that is,

relative to the same random experiment) that have finite second moment. Recall that two random variables are equivalent

if they are equal with probability 1. We consider two such random variables as the same vector, so that technically, our

vector space consists of equivalence classes under this equivalence relation. The addition operator corresponds to the

usual addition of two real-valued random variables, and the operation of scalar multiplication corresponds to the usual

multiplication of a real-valued random variable by a real (non-random) number.

Recall also that V2 is an inner product space, with inner product given by

〈U , V〉 = 𝔼(U  V)

Projections

Suppose now that X  a general random variable defined on the sample space S , and that Y  is a real-valued random variable

in V2.

 46. Show that the set below is a subspace of V2:

U = {U ∈ V2 : U = u( X) for some u : S → ℝ}

 47. Reconsider Exercise 3 to show that 𝔼(Y ||X) is the projection of Y  on to the subspace U.

Suppose now that X ∈ V2. Recall that the set

W = {W ∈ V2 : W = a X + b for some (a ∈ ℝ) and (b ∈ ℝ)}

is also a subspace of V2, and in fact is clearly also a subspace of U. We showed that the L(Y ||X) is the projection of Y

onto W.

Virtual Laboratories > 3. Expected Value >  1  2  3  4  5  6
Contents | Applets | Data Sets | Biographies | External Resources | Keywords | Feedback | ©


