3. Mixed Distributions

Basic Theory

As usual, we start with a random experiment with probability measure \mathbb{P} on an underlying sample space. In this section, we will discuss two "mixed" cases for the distribution of a random variable: the case where the distribution is partly discrete and partly continuous, and the case where the variable has both discrete coordinates and continuous coordinates.

Distributions of Mixed Type

Suppose that X is a random variable for the experiment, taking values in $S \subseteq \mathbb{R}^n$. Then X has a **distribution of mixed** type if S can be partitioned into subsets D and C with the following properties:

- 1. *D* is countable and $0 < \mathbb{P}(X \in D) < 1$.
- 2. $\mathbb{P}(X = x) = 0$ for all $x \in C$.

Thus, part of the distribution of X is concentrated at points in a discrete set D; the rest of the distribution is continuously spread over C. In the picture below, the light blue shading is intended to represent a continuous distribution of probability while the darker blue dots are intended to represents points of positive probability.

Let $p = \mathbb{P}(X \in D)$, so that 0 . We can define a function on*D*that is a**partial probability density function**for the discrete part of the distribution.

1. Let
$$g(x) = \mathbb{P}(X = x)$$
 for $x \in D$. Show that
a. $g(x) \ge 0$ for $x \in D$
b. $\sum_{x \in D} g(x) = p$
c. $\mathbb{P}(X \in A) = \sum_{x \in A} g(x)$ for $A \subseteq D$

Usually, the continuous part of the distribution is also described by a **partial probability density function**. Thus, suppose there is a nonnegative function h on C such that

$$\mathbb{P}(X \in A) = \int_A h(x) dx$$
 for $A \subseteq C$

								_			_		 	-	-		 	 		 			-	_		_				-	_	 -	-		_	_	_	 	 				 _	 	-	-	 	-	_	 	 	-	 ŝ.	
	2.	Sh	low	/ tl	nat	1	<u>ا</u> م	h(.	x)	d	x	=	۱.	_	p																																						i.	
1.1						J	Ċ								r																																						1	

The distribution of X is completely determined by the partial probability density functions g and h. First, we extend the functions g and h to S in the usual way: g(x) = 0 for $x \in C$, and h(x) = 0 for $x \in D$.

$$\mathbb{P}(X \in A) = \sum_{x \in A} g(x) + \int_A h(x) dx, \quad A \subseteq S$$

The conditional distributions on D and on C are purely discrete and continuous, respectively.

3. Show that the conditional distribution of X given $X \in D$ is discrete, with probability density function	
$f(x X \in D) = \frac{g(x)}{p}, x \in D$	
Solution 5. Show that the conditional distribution of X given $X \in C$ is continuous, with probability density function	
$f(x X \in C) = \frac{h(x)}{1-p}, x \in C$	

Thus, the distribution of X is a **mixture** of a discrete distribution and a continuous distribution. Mixtures are studied in more generality in the section on conditional distributions.

Truncated Variables

Distributions of mixed type occur naturally when a random variable with a continuous distribution is *truncated* in a certain way. For example, suppose that $T \in [0, \infty)$ is the random lifetime of a device, and has a continuous distribution with probability density function f. In a test of the device, we can't wait forever, so we might select a positive constant a and record the random variable U, defined by **truncating** T at a as follows:

$$U = \begin{cases} T, & T < a \\ a, & T \ge a \end{cases}$$

8 6. Show that U has a mixed distribution. In particular, show that, in the notation above,

a. $D = \{a\}$ and $g(a) = \int_{a}^{\infty} f(t)dt$ b. C = [0, a) and h(t) = f(t) for $t \in [0, a)$

Suppose that random variable X has a continuous distribution on \mathbb{R} , with probability density function f. The variable is

truncated at *a* and *b* (a < b) to create a new random variable *Y* as follows:

$$Y = \begin{cases} a, & X \le a \\ X, & a < X < b \\ b, & X \ge b \end{cases}$$

3 7. Show that *Y* has a mixed distribution. In particular show that a. $D = \{a, b\}, g(a) = \int_{-\infty}^{a} f(x)dx, g(b) = \int_{b}^{\infty} f(x)dx$ b. C = (a, b) and h(x) = f(x) for $x \in (a, b)$

Random Variable with Mixed Coordinates

Suppose X and Y are random variables for our experiment, and that X has a discrete distribution, taking values in a countable set S while Y has a continuous distribution on $T \subseteq \mathbb{R}^n$

	-	-			-				-		-			-			_	-	-		-		-		-		-			-				-			-			-					-			-		_	 -	÷
l		8.	S	ho	w	th	at	₽((2	K,	Y):	=	()	ĸ,	y)) =	= () f	or	· (.	x,	<i>y</i>)) (= <i>S</i>	δ×	Τ.	Tl	hu	5 (Χ,	Y	') I	ha	s a	l C	ont	in	uo	us	dis	str	ibı	ıti	on	or	ı S	X	Γ.			į
н.					-				-		-			-											-																										 	ł

Usually, (X, Y) has a probability density function f on $S \times T$ in the following sense:

$$\mathbb{P}((X, Y) \in A \times B) = \sum_{x \in A} \int_B f(x, y) dy, \quad A \times B \subseteq S \times T$$

2 9. More generally, for $C \subseteq S \times T$ and $x \in S$, define the **cross section** at x by $C(x) = \{y \in T : (x, y) \in C\}$ Show that $\mathbb{P}((X, Y) \in C) = \sum_{x \in S} \int_{C(x)} f(x, y) dy, \quad C \subseteq S \times T$

Technically, *f* is the probability density function of (X, Y) with respect to the product measure on $S \times T$ formed from counting measure on *S* and *n*-dimensional measure λ_n on *T*.

Random vectors with mixed coordinates arise naturally in applied problems. For example, the cicada data set has 4 continuous variables and 2 discrete variables. The M&M data set has 6 discrete variables and 1 continuous variable. Vectors with mixed coordinates also occur when a discrete parameter for a continuous distribution is randomized, or when a continuous parameter for a discrete distribution is randomized.

Examples and Applications

). Suppose that X has probability $\frac{1}{2}$ uniformly distributed on the set {1, 2,, 8} and has probability $\frac{1}{2}$ uniformly	ł
stributed on the interval [0, 10]. Find $\mathbb{P}(X > 6)$.	
]	?
1. Suppose that (X, Y) has probability $\frac{1}{3}$ uniformly distributed on $\{0, 1, 2\}^2$ and has probability $\frac{2}{3}$ uniformly	Ì
stributed on $[0, 2]^2$ Find $\mathbb{P}(Y > X)$.	ł
	?
2. Suppose that the lifetime T of a device (in 1000 hour units) has the exponential distribution with probability	

density function $f(t) = e^{-t}$, $t \ge 0$. A test of the device is terminated after 2000 hours; the truncated lifetime U is recorded. Find each of the following: a. $\mathbb{P}(U < 1)$ b. $\mathbb{P}(U=2)$? 🔁 13. Let $f(x, y) = \begin{cases} \frac{1}{3}, & x = 1, \ 0 \le y \le 1\\ \frac{1}{6}, & x = 2, \ 0 \le y \le 2\\ \frac{1}{9}, & x = 3, \ 0 \le y \le 3 \end{cases}$ a. Show that f is a mixed density in the sense defined above, with $S = \{1, 2, 3\}$ and T = [0, 3]b. Find $\mathbb{P}(X > 1, Y < 1)$. ? ■ 14. Let $f(p, k) = 6 \binom{3}{k} p^{k+1} (1-p)^{4-k}$ for $k \in \{0, 1, 2, 3\}$ and $p \in [0, 1]$. a. Show that f is a mixed probability density function in the sense defined above. b. Find $\mathbb{P}\left(V < \frac{1}{2}, X = 2\right)$ where (V, X) is a random vector with probability density function f. ? As we will see in the section on conditional distributions, the distribution in the last exercise models the following experiment: a random probability V is selected, and then a coin with this probability of heads is tossed 3 times; X is the

I 15. For the M&M data, let N denote the total number of candies and W the net weight (in grams). Construct an empirical density function for (N, W)

Virtual Laboratories > 2. Distributions > 1 2 3 4 5 6 7 8 Contents | Applets | Data Sets | Biographies | External Resources | Keywords | Feedback | ©

number of heads.