## 3. Mixed Distributions

## Basic Theory

As usual, we start with a random experiment with probability measure $\mathbb{P}$ on an underlying sample space. In this section, we will discuss two "mixed" cases for the distribution of a random variable: the case where the distribution is partly discrete and partly continuous, and the case where the variable has both discrete coordinates and continuous coordinates.

## Distributions of Mixed Type

Suppose that $X$ is a random variable for the experiment, taking values in $S \subseteq \mathbb{R}^{n}$. Then $X$ has a distribution of mixed type if $S$ can be partitioned into subsets $D$ and $C$ with the following properties:

1. $D$ is countable and $0<\mathbb{P}(X \in D)<1$.
2. $\mathbb{P}(X=x)=0$ for all $x \in C$.

Thus, part of the distribution of $X$ is concentrated at points in a discrete set $D$; the rest of the distribution is continuously spread over $C$. In the picture below, the light blue shading is intended to represent a continuous distribution of probability while the darker blue dots are intended to represents points of positive probability.


Let $p=\mathbb{P}(X \in D)$, so that $0<p<1$. We can define a function on $D$ that is a partial probability density function for the discrete part of the distribution.
8. 1. Let $g(x)=\mathbb{P}(X=x)$ for $x \in D$. Show that
a. $g(x) \geq 0$ for $x \in D$
b. $\sum_{x \in D} g(x)=p$
c. $\mathbb{P}(X \in A)=\sum_{x \in A} g(x)$ for $A \subseteq D$

Usually, the continuous part of the distribution is also described by a partial probability density function. Thus, suppose there is a nonnegative function $h$ on $C$ such that

$$
\mathbb{P}(X \in A)=\int_{A} h(x) d x \text { for } A \subseteq C
$$

8. 2. Show that $\int_{C} h(x) d x=1-p$.

The distribution of $X$ is completely determined by the partial probability density functions $g$ and $h$. First, we extend the functions $g$ and $h$ to $S$ in the usual way: $g(x)=0$ for $x \in C$, and $h(x)=0$ for $x \in D$.
8. 3. Show that

$$
\mathbb{P}(X \in A)=\sum_{x \in A} g(x)+\int_{A} h(x) d x, \quad A \subseteq S
$$



The conditional distributions on $D$ and on $C$ are purely discrete and continuous, respectively.
8. 4. Show that the conditional distribution of $X$ given $X \in D$ is discrete, with probability density function

$$
f(x \mid X \in D)=\frac{g(x)}{p}, \quad x \in D
$$

88. Show that the conditional distribution of $X$ given $X \in C$ is continuous, with probability density function

$$
f(x \mid X \in C)=\frac{h(x)}{1-p}, \quad x \in C
$$

Thus, the distribution of $X$ is a mixture of a discrete distribution and a continuous distribution. Mixtures are studied in more generality in the section on conditional distributions.

## Truncated Variables

Distributions of mixed type occur naturally when a random variable with a continuous distribution is truncated in a certain way. For example, suppose that $T \in[0, \infty)$ is the random lifetime of a device, and has a continuous distribution with probability density function $f$. In a test of the device, we can't wait forever, so we might select a positive constant $a$ and record the random variable $U$, defined by truncating $T$ at $a$ as follows:

$$
U= \begin{cases}T, & T<a \\ a, & T \geq a\end{cases}
$$

8. 6. Show that $U$ has a mixed distribution. In particular, show that, in the notation above,
a. $D=\{a\}$ and $g(a)=\int_{a}^{\infty} f(t) d t$
b. $C=[0, a)$ and $h(t)=f(t)$ for $t \in[0, a)$

Suppose that random variable $X$ has a continuous distribution on $\mathbb{R}$, with probability density function $f$. The variable is
truncated at $a$ and $b(a<b)$ to create a new random variable $Y$ as follows:

$$
Y= \begin{cases}a, & X \leq a \\ X, & a<X<b \\ b, & X \geq b\end{cases}
$$

88 7. Show that $Y$ has a mixed distribution. In particular show that
a. $D=\{a, b\}, g(a)=\int_{-\infty}^{a} f(x) d x, g(b)=\int_{b}^{\infty} f(x) d x$
b. $C=(a, b)$ and $h(x)=f(x)$ for $x \in(a, b)$

## Random Variable with Mixed Coordinates

Suppose $X$ and $Y$ are random variables for our experiment, and that $X$ has a discrete distribution, taking values in a countable set $S$ while $Y$ has a continuous distribution on $T \subseteq \mathbb{R}^{n}$
8. Show that $\mathbb{P}((X, Y)=(x, y))=0$ for $(x, y) \in S \times T$. Thus $(X, Y)$ has a continuous distribution on $S \times T$.

Usually, $(X, Y)$ has a probability density function $f$ on $S \times T$ in the following sense:

$$
\mathbb{P}((X, Y) \in A \times B)=\sum_{x \in A} \int_{B} f(x, y) d y, \quad A \times B \subseteq S \times T
$$

80. More generally, for $C \subseteq S \times T$ and $x \in S$, define the cross section at $x$ by $C(x)=\{y \in T:(x, y) \in C\}$ Show that

$$
\mathbb{P}((X, Y) \in C)=\sum_{x \in S} \int_{C(x)} f(x, y) d y, \quad C \subseteq S \times T
$$

Technically, $f$ is the probability density function of $(X, Y$ ) with respect to the product measure on $S \times T$ formed from counting measure on $S$ and $n$-dimensional measure $\lambda_{n}$ on $T$.

Random vectors with mixed coordinates arise naturally in applied problems. For example, the cicada data set has 4 continuous variables and 2 discrete variables. The M\&M data set has 6 discrete variables and 1 continuous variable. Vectors with mixed coordinates also occur when a discrete parameter for a continuous distribution is randomized, or when a continuous parameter for a discrete distribution is randomized.

## Examples and Applications

88. Suppose that $X$ has probability $\frac{1}{2}$ uniformly distributed on the set $\{1,2, \ldots, 8\}$ and has probability $\frac{1}{2}$ uniformly distributed on the interval $[0,10]$. Find $\mathbb{P}(X>6)$.
89. Suppose that $(X, Y)$ has probability $\frac{1}{3}$ uniformly distributed on $\{0,1,2\}^{2}$ and has probability $\frac{2}{3}$ uniformly distributed on $[0,2]^{2}$ Find $\mathbb{P}(Y>X)$.

8 12. Suppose that the lifetime $T$ of a device (in 1000 hour units) has the exponential distribution with probability
density function $f(t)=e^{-t}, t \geq 0$. A test of the device is terminated after 2000 hours; the truncated lifetime $U$ is recorded. Find each of the following:
a. $\mathbb{P}(U<1)$
b. $\mathbb{P}(U=2)$
13. Let

$$
f(x, y)= \begin{cases}\frac{1}{3}, & x=1,0 \leq y \leq 1 \\ \frac{1}{6}, & x=2,0 \leq y \leq 2 \\ \frac{1}{9}, & x=3,0 \leq y \leq 3\end{cases}
$$

a. Show that $f$ is a mixed density in the sense defined above, with $S=\{1,2,3\}$ and $T=[0,3]$
b. Find $\mathbb{P}(X>1, Y<1)$.
8. 14. Let $f(p, k)=6\binom{3}{k} p^{k+1}(1-p)^{4-k}$ for $k \in\{0,1,2,3\}$ and $p \in[0,1]$.
a. Show that $f$ is a mixed probability density function in the sense defined above.
b. Find $\mathbb{P}\left(V<\frac{1}{2}, X=2\right)$ where $(V, X)$ is a random vector with probability density function $f$.

As we will see in the section on conditional distributions, the distribution in the last exercise models the following experiment: a random probability $V$ is selected, and then a coin with this probability of heads is tossed 3 times; $X$ is the number of heads.

曲15. For the M\&M data, let $N$ denote the total number of candies and $W$ the net weight (in grams). Construct an empirical density function for $(N, W)$

[^0]
[^0]:    Virtual Laboratories >2. Distributions > $\begin{aligned} & 1 \\ & 2\end{aligned} \left\lvert\, \begin{array}{lllllll}3 & 4 & 5 & 6 & 7 & 8\end{array}\right.$
    Contents| Applets| Data Sets| Biographies| External Resources| Keywords| Feedback| ©

