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1 Introduction, the model

The model of random walk with internal states (brie�y RWwIS) was introduced by Sinai in 1981 in his
Kyoto talk [6]. His aim was to get an e¢ cient tool for examining Lorentz process (in this context the
internal states would represent the elements of the Markov partition), but other applications can be
found, for instance, in some models of queueing systems. Let us begin with the de�nition of RWwIS (we
follow the notation of [3]).

De�nition 1 Let E be a �nite set. On the set H = Zd � E (d = 1; 2; :::), the Markov chain
�n = (�n; "n) is a random walk with internal states (RWwIS), if for 8xn; xn+1 2 Zd; jn; jn+1 2 E

P (�n+1 = (xn+1; jn+1)j�n = (xn; jn)) = pxn+1�xn;jn;jn+1 :
In fact, E could be countable as well, but we will consider only the �nite case. We will denote

s = card (E).

We have some basic assumptions, which will always be supposed. These are the following:
(i) ("0; "1; :::) - which is obviously a Markov chain - is irreducible and aperiodic
(ii) the arithmetics are trivial, with the notation of [3], L = Zd
(iii) the expectation of one step is zero provided that " is distributed according to its unique stationary

measure
(iv) the covariance matrix, which is exactly de�ned in the Appendix, exists and nonsingular.

Let Ld (n) denote the number of distinct sites visited by a RWwIS up to n steps. The expectation
of Ld (n) is Ed (n), and the variance is Vd (n). Our goal is to prove theorems corresponding to the ones
of [2], concerning to the same quantities of simple symmetric random walks.
We have some �gures showing trajectories of some random walks. Figure 1 demonstrates a random

trajectory of a two dimensional RWwIS. Black points are the sites, which have been visited during the
�rst 100 steps. The red point shows the place where the wandering particle is situated at step 100. In
this case L2 (100) = 50. Figure 2 shows a trajectory of the �rst 22 steps of a three dimensional RWwIS.
The meaning of the black and red points is the same as in the case of Figure 1. In this case we �nd
L3 (22) = 16.
This paper is organized as follows: in Sect. 2 we examine the high dimensional case, i.e. when d � 3.

We prove asymptotics for Ed (n), and estimate Vd (n), from which we can prove weak and strong law of
large numbers. The case d = 2 is a little bit more involved, i.e. the main theorem of [3] is not enough,
we have to prove a local limit theorem with a remainder term. This theorem is in Sect. 3. In Sect.
4 we discuss the d = 2 case. For E2 (n) we �nd the same asymptotics (const n

logn ) as in [2], but with
some di¤erent constant. V2 (n) is also estimated, and weak law of large numbers is also proved. Sect. 5
contains some remarks. In the Appendix we write the theorems and proofs, which are not my results,
but which are necessary to understand our proofs and the features of the model.
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Figure 1: The �rst 100 steps of a RWwIS in d = 2

Figure 2: The �rst 22 steps of a RWwIS in d = 3
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2 Results for d � 3
In the high dimensional case we �nd that Ed (n) growths fast, i.e. linearly in n, as we could have
conjectured it from the transiency of the RWwIS. In Theorem 1 we prove this fact and compute remainder
terms, too. Our approach is based on the one of [2], but there are some main di¤erences. First, we have
to consider the reversed random walk, which is trivial in the case of [2]. After it, we have to write the
renewal equation with matrices and vectors, which is more technical then in the case of [2]. Moreover,
there will be a technical di¢ culty, namely we will have to consider the case, when the distribution of
"0 is arbitrary. This will be treated separately in Proposition 1. After it, we will be able to estimate
Vd (n). In fact, o

�
n2
�
is enough for proving weak law of large numbers, and O

�
n2��

�
for strong law of

large numbers (see Appendix for more details), but our estimations will be sharper. Nevertheless, these
estimations are weaker then the ones of [2] (see Appendix) because a symmetry argument, used in [2],
fails here. That is why the computation is longer and it uses Proposition 1, too. Let us see the details.

Theorem 1 Let d � 3. Assuming that "0 is distributed according to its unique stationary measure, we
have

E3 (n) = n
3 +O(
p
n)

E4 (n) = n
4 +O(log n)

Ed (n) = n
d + �d +O(n
2�d=2) for d � 5

with some constants 
d; �d, depending on the RWwIS.

Proof. Fix some dimension d � 3. For the simplicity of notation in the sequel we skip the index
d. Let B1 =

�
py;i;j ; y 2 Zd; i; j = 1; :::; s

�
be a RWwIS ful�lling our assumptions, and let � denote

the unique stationary measure of ". Let us consider the reversed RWwIS, i.e. the one for which the
appropriate qy;i;j probabilities are

qy;i;j =
�jp�y;j;i

�i
:

Let B2 denote this RWwIS. Obviously, the unique stationary distribution of the internal states of B2
is also �. Let X1; X2; ::: be the stochastic process consisting of the steps of B1 (supposed that "0 is
distributed according to �), and Y1; Y2; ::: the same object for B2. Let 
(n) = P (in the nth step B1 visits
a new point j "0 � �), 
 (0) = 1 and X0 = 0. Then we have:


(n) = P (X0 + :::+Xi 6= X0 + :::+Xn i = 0; ::n� 1)
= P (Xn +Xn�1:::+Xi+1 6= 0 i = 0; ::n� 1)
= P (Y1 + Y2:::+ Yn�i 6= 0 i = 0; ::n� 1)
= P (Y1 + Y2:::+ Yj 6= 0 j = 1; ::n):

It is clear, that we have to examine B2.
Let Uk be a matrix sized s� s, where (Uk)i;j = P ( for B2 �k = (0; j) j �0 = (0; i) ). Let Rk be an s

dimensional vector, where (Rk)j = P ( B2 does not visit the origin for k steps j �0 = (0; j) ). 1 2 Rs,
1 = (1; 1; :::; 1)

T . Obviously we have:
nP
k=0

Uk �Rn�k = 1:

We are interested in hRn; �i = 
(n). From the de�nition of Rk for n1 > n2 we have Rn2 � Rn1 � 0,
meaning that all the components of the vector are not negative.
We know from [3] 5.2. that (Uk)i;j = cjk

� d
2 + oi;j(k

� d
2 ). Here we have cj = c�j , but we will not use

this. So we have �
nP
k=0

Uk

�
i;j

= eci;j +O �n1� d
2

�
:
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Using the monotonity of Rk

1 �
�

nP
k=0

Uk

�
�Rn:

De�ning bcj the following way �
1

s
1

�T
�
�

nP
k=0

Uk

�!
j

=
1

s

sP
i=1

�eci;j +O �n1� d
2

��
= bcj +O �n1� d

2

�
;

we have
1 �

D�bc1 +O �n1� d
2

�
; :::;bcs +O �n1� d

2

��
; Rn

E
: (1)

For all j, (Rn)j has limit in n being a decreasing non-negative sequence. So let (Rn)j = R
j + ajn, where

ajn & 0. It will be enough to estimate the order of ajn, because 
(n) =
sP
j=1

�j
�
Rj + ajn

�
.

For the estimation of the other direction let k < n. We have:�
1

s
1

�T
�
�

kP
i=0

Ui

�
�Rn�k +

�
1

s
1

�T
�
 

nP
i=k+1

Ui

!
� 1 � 1:

Since (Uk)i;j � 0 for all k; i; j, we have
�
1
s1
�T � � kP

i=0

Ui

�
� (bc1; :::;bcs). On the other hand � 1s1�T � 

nP
i=k+1

Ui

!
� 1 = o(1), as k !1, so

h(bc1; :::;bcs) ; Rn�ki � 1 + o(1): (2)

So if we let n!1, k !1, n� k !1, (2) together with (1) yields

bc1R1 + :::+ bcsRs = 1:
Substituting to (1) we have:

sP
j=1

h�bcj +O �n1� d
2

�� �
Rj + ajn

�i
� 1;

so
sP
j=1

hbcjajn +O �n1� d
2

�
Rj +O

�
n1�

d
2

�
ajn

i
� 0:

hence
sP
j=1

bcjajn � O �n1� d
2

�
:

Since bcj > 0, és ajn � 0, we get that for 8j ajn = O
�
n1�

d
2

�
. This yields 
(n) =

sP
j=1

�j
�
Rj + ajn

�
=


 +O
�
n1�

d
2

�
. Hence the statement (just like in [2]).

Proposition 1 The assertion of Theorem 1 remains true when the distribution of "0 is arbitrary.

Proof. With the notation 
(n) = 
 + h(n) we already know that h(n) = O
�
n1�

d
2

�
. Let e
ej (n) =

P (at time j we visite a new site j "0 = j), e
ej (n) = 
 + hj(n) j = 1; :::; s. As in the previous proof, it
would be su¢ cient to prove hj(n) = O

�
n1�

d
2

�
for all j.
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Let K for the present be a �xed, great natural number, and

�k + b
j
k(K) = P ("K = k j "0 = j) j; k = 1; :::s:

We know from the ergodic theorem of Markov chains that bjk(K) tends to zero exponentially fast in
K.
Denote by p(K;n) the probability of visiting a site that was visited during the �rst K steps, but was

not visited in the following (n �K � 1) steps at the nth step, provided that "0 = j. We know from [3]

5.2. that p(K;n) = O
�
K � (n�K)�

d
2

�
, whence

e
ej (n) = sP
k=1

h�
�k + b

j
k(K)

� e
ek(n�K)i+O �K � (n�K)�
d
2

�
: (3)

Recall e
ej (n) = 
 + hj(n) to get
hj(n) =

sP
k=1

�kh
k(n�K) +

sP
k=1

bjk(K)h
k(n�K) +O

�
K � (n�K)�

d
2

�
=: I + II + III: (4)

Now let us set K = K(n) = bn�c, with arbitrary 0 < � < 1. It is clear that I is equal to h(n�K),
so since Theorem 1, I = O

�
(n� n�)1�

d
2

�
� O

�
n1�

d
2

�
. Since bjk(K) tends to zero exponentially fast in

K, we have II � O
�
n1�

d
2

�
. Finally III = O

�
n� (n� n�)�

d
2

�
� O

�
n1�

d
2

�
. Hence the statement.

Now let us see the estimation of Vd (n).

Theorem 2 For d � 3 assuming that "0 � � we have

Vd(n) = O
�
n1+

2
d

�
:

Proof. Let 
d (n;m) denote the probability of the event, that our RWwIS visits new points in both the
nth and the mth step under the condition, that "0 � �, and let A = fSd(i) 6= Sd(m); i = 0; :::;m� 1g

(where, of course Sd(i) =
iP

j=1

Xj). Obviously 
d (n;m) = 
d (m;n), so w.l.o.g. when estimating 
d (n;m)

one can assume n > m.


d (m;n) = P (A & Sd(j) 6= Sd(n); j = 0; :::; n� 1)
� P (A & Sd(j) 6= Sd(n); j = m; :::; n� 1)
= 
(n)P (Sd(j) 6= Sd(n); j = m; :::; n� 1 j A) :

Here P (Sd(j) 6= Sd(n); i = m; :::; n� 1 j A) is the probability of the event, that the RWwIS
visits a new point in the (n � m)th step, assuming, that "0 � � (n). So the condition A is involved
in � (n), and because of the Markov property, has no other contribution. This event is denoted bye
�(n)d (n �m). Because of Proposition 1 we know, that e
�(n)d (n �m) ! 
d, as (n �m) ! 1, and it is
easy to see that this convergence is uniform in � (n). So we know, that for 8� > 0 9 N = N (�), such
that for 8n�m > N the following estimation holds.

e
�(n)d (n�m) =
sP
j=1

�(n)je
ejd (n�m) < (1 + �)
d(n�m):
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In addition, using Proposition 1 one can estimate N (�), which will be done a little bit later. Now,
let us see the estimation of Vd (n)

Vd (n) =
nX

i;j=0


d (i; j)�
nX
i=0


d (i)
nX
j=0


d (j)

� 2
X

0�i�j�n
(
d (i; j)� 
d (i) 
d (j))

� 2
X

0�i<i+K�j�n
(
d (i; j)� 
d (i) 
d (j)) + 2

X
0�i�n�K
i�j�i+K


d (i; j)

= : S1 + S2:

Let K big enough, such that for n�m > K one would have e
d(n�m) < (1+�)
d(n�m). Estimating
S1 and S2 separately, we get

S1
2

=
n�KX
i=0

nX
j=i+K


d (i; j)�
n�KX
i=0

nX
j=i


d (i) 
d (j) +
n�KX
i=0

i+KX
j=i


d (i) 
d (j)

�
n�KX
i=0


d (i) max
0�i�n�K

0@ nX
j=i

(1 + �) 
d (j � i)�
nX
j=i


d (j)

1A
+
n�KX
i=0


d (i)
i+KX
j=i


d (j)

�
n�KX
i=0


d (i)
h
�Ed(n) + Ed(n�

jn
2

k
)� Ed(n) + Ed(

jn
2

k
)
i

+
n�KX
i=0


d (i)K:

where estimating the maximum we used the monotonity of 
d(n), too. On the other hand

S2 � 2
X

0�i�n�K
i�j�i+K


d (i) � 2KEd(n):

From Proposition 1 one can easily deduce, that e
�d(k) < �
1 +O(k1�

d
2 )
�

d(k), uniformly in �. So

replacing K to K (n) in the above argument, one can change � to O
�
K(n)1�

d
2

�
, thus

V3 (n) � O(n)
h
O
�
K(n)1�

d
2

�
O (n) +O

�p
n
�i
+K (n)O (n)

V4 (n) � O(n)
h
O
�
K(n)1�

d
2

�
O (n) +O (log n)

i
+K (n)O (n)

Vd (n) � O(n)
h
O
�
K(n)1�

d
2

�
O (n) +O (1)

i
+K (n)O (n) d � 5:

Now K(n) = n
2
d proves the statement.

Corollary 1 For RWwIS in d � 3 the weak law of large numbers holds, namely

P (jLd (n)� Ed (n)j > "Ed (n))! 0

for 8" > 0.
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Proof. Since Vd(n) = o
�
n2
�
Chebyshev�s inequality applies (just like in [2]).

From Theorem 2 one can deduce even strong law of large numbers:

Theorem 3 For RWwIS in d � 3 strong law of large numbers holds, namely

P

�
lim
n!1

Ld(n)

Ed(n)
= 1

�
= 1:

Proof. For d � 4 the proof is exactly the same as in [2] (see Appendix for the complete proof). For
d = 3 the di¤erence is, that � must be a real number satisfying

8

9
< � < 1;

and � should satisfy
1

2�� 5=3 < � <
1

1� �:

After choosing � and � this way, the same argument holds as in [2].

3 Local limit theorem with remainder term

In this section we calculate remainder term for the theorem 5.2. in [3] (for the theorem itself see
Appendix). The calculation is similar to the one of [3]. The main point is that while in [3] it is su¢ cient
to consider the Taylor expansion of the largest eigenvalue up to the quadratic term, now, we have to
calculate the third term as well. We have to start with some notation.

Let Ay = (py;j;k)j;k=1;:::;s : Cs ! Cs. With this notation, the transition matrix for the Markov
chain ("0; "1; :::) is Q =

P
y2Zd

Ay. We know that the unique stationary distribution of Q is �. Let

�(t) =
P
y2Zd

exp (i ht; yi)Ay; t 2 [��; �]d. Now we have to consider the Taylor expansion of the largest

eigenvalue of �(t), which is denoted by �(t), up to the third term.
Let us �rst assume that d = 1. From our basic assumptions it follows that M =

P
y2Z
yAy and

� =
P
y2Z
y2Ay are convergent series. But from know, we suppose the convergence of

P
y2Z
ynAy, for all n,

too. Let � denote
P
y2Z
y3Ay. From the existence of M;�;� we have

�(t) = Q+ itM � t
2

2
�� it

3

6
� + o(t3) (t! 0); (5)

and by the perturbation theory (in fact, the existence of � should be enough, but our assumption is not
an essential restriction)

�(t) = 1 + r1t+
r2
2
t2 +

r3
6
t3 + o(t3) (t! 0): (6)

From [3] we know that r1 = 0 and r2 = �h�1; �i+ 2


M(Q� 1)�1M;�

�
.

For the computation of r3 we use the same method as for r1 and r2. Let � : Cs ! Cs �	 = h	; �i 1
and B = (Q� 1 + c�)�1 for some real c 6= 0. Then

(�(t)� �(t) + c�)�1

=

�
Q+ itM � t

2

2
�� it

3

6
�� 1� r1t�

r2
2
t2 � r3

6
t3 + c�+ o(t3)

��1
=

�
1 + itBM � t

2

2
B�� it

3

6
B�� r1tB �

r2
2
t2B � r3

6
t3B + o(t3)

��1
B

= S�1B:
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Now, elementary calculations show that

S = B � itBMB + t
2

2
B�B +

it3

6
B�B +

r2
2
t2B2 +

r3
6
t3B2

�t2BMBMB � it
3

2
B�BMB � it

3

2
BMB�B � ir2

2
t3BMB2

+it3BMBMBMB + o(t3):

Using B1 = c�11, B�� = c�1� and 1 = c


(�(t)� �(t) + c�)�11; �

�
we conclude

r3 = i (3 h�BM1; �i+ 3 hMB�1; �i � h�1; �i) :

Using the notation �2 = �r2 we can now formulate our theorem:

Theorem 4 Under the assumptions of [3] 2.1. we have:

P (�n = (x; k)j�0 = (0; j))� �k
1p
2�n�

exp

�
� x2

2n�2

��
1� ir3

6
x
�
3�2n� x2

� 1
�6

1

n2

�
= o

�
1

n

�
:

Proof. The proof is similar to the one of Theorem 2.1. in [3]. Because of (6) we have

�n (t) = h1��i
�
1� �

2t2

2
+
r3
6
t3 + o

�
t3
��n

(1 + o (1)) ; (7)

where o(1) on the right hand side is the contribution of the other eigenvalues besides �(t), thus this o(1)
converges to zero exponentially fast uniformly for small t. Elementary calculations show that�

1� �
2s2

2n
+
r3
6

s3

n
3
2

+ o

�
s

n
3
2

��n
= exp

�
��

2s2

2

��
1 +

r3
6
s3

1p
n
+ o

�
sp
n

��
: (8)

In order to prove the statement we use the Fourier transforms, and the usual estimations




pn �R
��
exp (�ixt) e�j�n (t) dt� ��

p
2�

�
exp

�
� x2

2n�2

��
1� ir3

6
x
�
3�2n� x2

� 1
�6

1

n2

�





�

Z
jsj<n"





e�j�n� sp
n

�
� �� exp(��

2s2

2
)

�
1 +

r3
6

s3p
n

�



 ds
+ k�k

Z
jsj>n"

exp(��
2s2

2
)ds+

Z
n"<jsj<


p
n





e�j�n� sp
n

�



 ds
+

Z


p
n<jsj<�

p
n





e�j�n� sp
n

�



 ds
= I1 + I2 + I3 + I4;

where 0 < " < 1
2 arbitrary. It is clear that proving Ij = o

�
1p
n

�
; j = 1; 2; 3; 4 is enough for our

purposes. (7) and (8) yield that the integrand in I1 is equal to
�(n)
n1=2

exp
�
��2s2

2

�
, where �(n) ! 0

uniformly in s. Thus we have I1 = o
�

1p
n

�
. It is clear that I2 = o

�
1p
n

�
, and I4 converges exponentially

fast to zero. Now, we have to estimate I3. It is easy to see that (5) yields k�(t)k � exp
�
��2t2

4

�
, if jtj
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is smaller than an appropriate 
 > 0 constant. Thus

I3 =

Z
n"<jsj<


p
n





e�j�n� sp
n

�



 ds = pn Z
n"�1=2<jtj<




e�j�n (t)

 dt �
�

p
n

Z
n"�1=2<jtj<


exp

�
��

2t2n

4

�
dt =

Z
n"<jsj<


p
n

exp

�
��

2s2

4

�
ds:

So we have I3 = o
�

1p
n

�
, too.

Remark 1 In Theorem 4 for the expression subtracted from the appropriate probability we have:

�k
1p
2�n�

exp

�
� x2

2n�2

��
1� ir3

6
x
�
3�2n� x2

� 1
�6

1

n2

�
= �k

1p
2�n�

exp

�
�y

2

2

�
+ �k

1p
n�

1p
2�
exp

�
�y

2

2

�
ir3
6

�
y3n3=2�3 � 3yn3=2�3

� 1

�6
1

n2

= �k
1p
2�n�

exp

�
�y

2

2

�
+ �k

1

n

1p
2�
exp

�
�y

2

2

�
ir3
6

�
y3 � 3y

� 1
�4

= �k
1p
2�n�

exp

�
�y

2

2

�
+ �k

1p
n

1

�

q1 (y)p
n
;

where y = xp
n�
, and the q1 (y) is the function de�ned in [4], Chapter VI. (1.14.). In this sense the

local limit theorem concerning RWwIS is analogous to the one of simple symmetric random walk (see [4]
Chapter VII. Theorem 13).

The extension of Theorem 4 to the multidimensional case is straightforward. Analogously to (6) we
have:

�(t) = 1� 1
2
t�t+ f (t) + o(jtj3) (jtj ! 0) ;

where f(t) =
dP
i=1

dP
j=1

dP
k=1

r3;i;j;ktitjtk is the third term of the Taylor expansion. Denote


 =
nd=2

(2�)
d
P (�n = (x; :)j�0 = (0; j)) =

nd=2

(2�)
d

�Z
��

:::

�Z
��

exp (�i hx; ti) e�j�n (t) dt:

So the analogue of the expression subtracted from the appropriate probability in Theorem 4 (multiplied
by nd=2

(2�)d
) is

I(n) :=

1Z
�1

:::

1Z
�1

exp

�
�s�s
2
� i
�
x;

sp
n

��
f (s)p
n
ds:

Using Lebesgue�s Theorem it it easy to see that I(n) = O
�
n�1=2

�
. One can estimate I1; I2; I3; I4 the

same way, as we did it in the proof of Theorem 4 (see [3] 5.2. for more details). So we arrived at

Proposition 2 For the d dimensional RWwIS we have

P (�n = (x; k)j�0 = (0; j)) =
1

nd=2
�kg�

�
xp
n

�
+O

�
n�(d+1)=2

�
:

where g� (x) denotes the density of a Gaussian distribution with mean 0 and covariance matrix �.
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4 Results for d = 2

In this section we calculate E2 (n) and estimate V2 (n).

4.1 Simulations of E2 (n)

Before proving Theorem 5 I made some simulations to conjecture, whether E2 (n) is of order n
logn or

not. In fact, by that time I had no idea how to prove the theorem in a rigorous manner.
Let us consider three random walks: B1, B2, B3. B1 is the simple symmetric random walk. B2 is a

very simple RWwIS: the Q matrix corresponding to B2 is
�
1=2 1=2
1=2 1=2

�
, and for the four possible tran-

sitions of internal states B2 steps with the four unit vectors, respectively, with probability 1. Assuming
that "0 � (1=2; 1=2), it is clear that the steps of B2 are identically distributed to the ones of B1, but
they are dependent. De�ne B3 with the appropriate probabilities

p(0;1);1;1 =
3

10
;

p(1;0);1;2 =
7

10
;

p(0;�1);2;1 =
5

14
;

p(0;1);2;1 =
1

7
;

p(�1;0);2;2 =
1

2
:

It is easy to see that B1, B2 and B3 ful�ll the essential basic assumptions, i.e. assumption (i) (iii)
and (iv).
For these three random walks I generated approximately 103 trajectories of 104 steps, 102 trajectories

of 105 steps, 10 trajectories of 106 steps and 1 trajectory of 107 step using Mathematica. For each
trajectory I computed the number of distinct sites visited by the random walk. After it, from each
sample I computed the mean, and assuming that this value is ci logn

n with some constant ci (i = 1; 2; 3;
where ci corresponds to Bi) I got estimations to the ci�s. The result of these estimations can be seen in
the following table where bci (n) denotes the estimation of ci from trajectories of length n.

n bc1 (n) bc2 (n) bc3 (n)
104 2:65987 2:67432 2:71659
105 2:73242 2:79778 2:79516
106 2:84455 2:77546 2:79338
107 2:8126 2:67285 3:00839

Since c1 = � (see Theorem 1 in [2]) apparently these step sizes are not su¢ cient to conjecture the size
of the constant, but rather to see the order of increase. Since the behavior in the last two cases are very
similar to the one of the simple symmetric random walk, these results suggested the desired asymptotic
behavior and inspired me to make the calculations of the proofs of Theorem 4 and Theorem 5. Although
Theorem 5 does not concern the above B2 and B3 as they do not ful�ll our basic assumption (ii), these
results are inspirational because basic assumption (ii) is not essential (see Final remark 2).

4.2 Analytical arguments

In this subsection we will see the formal proofs of the estimations of E2 (n) and V2 (n). The idea of the
proofs (assuming that "0 � �) is similar to the ones of Theorem 1 and 2, or [2] Theorem 1 and Theorem
2. The computations are longer than in [2]. We have to write the renewal equation in terms of vectors
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and matrices, which is a new idea, and we use the above proved Proposition 2 because it is essential
that the remainder term should be summable, which was trivial in the case of [2]. We have to consider
the case of arbitrary initial distribution, separately, just like in Sect. 2. In this case we formulate the
fact that after some steps the distribution of " will be very close to �.

Theorem 5 Let d = 2. Assuming that "0 � � we have

E2 (n) =
2�
p
j�jn

log n
+O

�
n log log n

log2 n

�
:

Proof. As in the proof of Theorem 1 we examine the reversed RWwIS, and write the renewal equation
for B2

nP
k=0

Uk �Rn�k = 1: (9)

Proposition 2 yields

(Uk)i;j =
1

2�
p
j�j
�j
1

k
+O

�
k�3=2

�
;

thus �
nP
k=0

Uk

�
i;j

=
1

2�
p
j�j
�j log (ci;jn) +O

�
n�1=2

�
: (10)

Our purpose is to estimate hRn; �i = 
(n). Exactly as in the high dimensional case Rn is decreasing,
so (9) yields �

1

s
1

�T
�
�

kP
l=0

Ul

�
�Rn�k +

�
1

s
1

�T
�
 

nP
l=k+1

Ul

!
� 1 � 1: (11)

Let k !1, n!1. The relation between k and n will be �xed later. From (10) it follows that"�
1

s
1

�T
�
�

kP
l=0

Ul

�#
j

=
1

2�
p
j�j
�j log (bcjk) +O �k�1=2� (12)

for some bcj . So we have for k < n"�
1

s
1

�T
�
 

nP
l=k+1

Ul

!#
j

=
1

2�
p
j�j
�j [log (bcjn)� log (bcjk)] +O �k�1=2�+O �n�1=2� (13)

=
1

2�
p
j�j
�j log

n

k
+O

�
k�1=2

�
:

Substituting (12) and (13) to (11) we get

sP
j=1

"
1

2�
p
j�j
�j log (bcjk) +O �k�1=2�

#
(Rn�k)j +

sP
j=1

1

2�
p
j�j
�j log

n

k
+O

�
k�1=2

�
� 1: (14)

Put k = n� n
logn . This yields log k � log (n� k). Using 
(n� k) =

sP
j=1

�j (Rn�k)j from (14) we easily

obtain


 (n� k)
"

1

2�
p
j�j
log k

#
+

sP
j=1

"
1

2�
p
j�j
�j log bcj +O �k�1=2�

#
(Rn�k)j + C log

n

k
+O

�
k�1=2

�
� 1:

(15)
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Since log nk ! 0, and (Rn�k)j ! 0, as n�k !1 (recall that the RWwIS is recurrent in two dimension),
it follows that


 (n� k) � 2�
p
j�j

log k
+ o

�
1

log k

�
: (16)

Hence, by the choice of k,


 (n� k) � 2�
p
j�j

log (n� k) + o
�

1

log (n� k)

�
: (17)

Now let us give an upper estimation to 
(n). From (9) it follows that�
nP
k=0

Uk

�
�Rn � 1:

Multiplying by the vector 1
s1 we get

sP
j=1

"
1

2�
p
j�j
�j log (bcjn) +O �n�1=2�

#
(Rn)j � 1;

thus

S1 + S2 + S3

: =
1

2�
p
j�j

sP
j=1

�j (Rn)j log n+
1

2�
p
j�j

sP
j=1

�j (Rn)j log bcj + sP
j=1

O
�
n�1=2

�
(Rn)j � 1:

Since (Rn)j ! 0, it follows that S2 + S3 = o(1). So we have the upper estimation


 (n) � 2�
p
j�j

log n
+ o

�
1

log n

�
: (18)

From (17) and (18) we get


 (n) =
2�
p
j�j

log n
+ o

�
1

log n

�
: (19)

Unfortunately, the estimation (19) is not good enough for our purposes. But from (18) we see that

(Rn)j = O
�

1
logn

�
for all j. Hence, with the previous notation S2 = O

�
1

logn

�
. Obviously S3 = O

�
1

logn

�
.

Thus we arrived at
1

2�
p
j�j

sP
j=1

�j (Rn)j log n � 1 +O
�

1

log n

�
:

Hence


(n) � 2�
p
j�j

log n
+O

�
1

log2 n

�
: (20)

This estimation is sharp enough, as we will see later.
Now we have to improve our lower estimation. From (19) and (15) it follows that there exist C1 and

C2 constants, such that


 (n� k)
"

1

2�
p
j�j
log k +

C2
log (n� k) 
 (n� k)

#
+ C1 log

n

k
+O

�
k�

1
2

�
� 1:

Using 
 (n� k) log (n� k) � 2�
p
j�j+ o(1), we conclude


 (n� k)
"

1

2�
p
j�j
log k +O (1)

#
+ C log

n

k
+O

�
k�

1
2

�
� 1;
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thus


 (n� k) log (n� k) �
�
2�
p
j�j � C2�

p
j�j log n

k
+O

�
k�

1
2

�� log (n� k)
log k +O(1)

:

From now the end of the proof is almost the same as is [2]. We claim that


 (l) log l � 2�
p
j�j+O

�
log log l

log l

�
: (21)

From (20) and (21) the statement would follow just like in [2]. Put l = n
logn . It is obvious that

log log l

log l
� log log n

log n
: (22)

To prove (21), observe that

lim
n!1

log

 
1

1� 1
logn

!
log n

log log n
= 0: (23)

In the sense of (22) and (23) in order to prove (21) it is enough to verify

log
�

n
logn

�
log
�
n
�
1� 1

logn

��
+O(1)

= 1 +O

�
log log l

log l

�
: (24)

This is just an elementary computation.

log n� log log n
log n+ log

�
1� 1

logn

�
+O(1)

=
1� log logn

logn

1� log(1� 1
logn )

logn + O(1)
logn

=
1� log logn

logn

1 + O(1)
logn

=

�
1� log log n

log n

��
1 +

O(1)

log n

�
= 1 +O

�
log log n

log n

�
:

So we have proved (21). (20) and (21) imply


 (n) =
2�
p
j�j

log n
+O

�
log log n

log2 n

�
: (25)

Now an elementary calculation completes the proof. Obviously it is enough to prove

nX
i=3

�
1

log i
+O

�
log log i

log2 i

��
=
n� 2
log n

+O

�
n log log n

log2 n

�
: (26)

It is trivial that
nP
i=3

1
log i �

n�2
logn . First we are going to prove that

nX
i=3

1

log i
� n� 2
log n

+O

�
n log log n

log2 n

�
: (27)
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Obviously we have

nX
i=3

1

log i
=
n� 2
log n

+
nX
i=3

�
1

log i
� 1

log n

�
=
n� 2
log n

+
1

log n

nX
i=3

log (n=i)

log i
:

So in order to show (27) it is enough to verify

log n

n log log n

nX
i=3

log (n=i)

log i
< C <1 (28)

for all n. Denote i0 = i0 (n) =
j
n log logn
log2 n

k
. Now we have

S1 (n) + S2 (n) =
log n

n log log n

i0X
i=3

log (n=i)

log i
+

log n

n log log n

nX
i=i0

log (n=i)

log i
:

Thus

S1 (n) �
1

n log log n

i0X
i=3

log2 n

log i
� 1

log 3

because of the de�nition if i0. On the other hand for all " > 0

S2 (n) �
1

log log n

log n

log i0
log

�
n

i0

�
� C log log

2 n� log log log n+ "
log log n

� 2C

holds for large enough n where C is an upper bound of lognlog i0
(such an upper bound exists as logn

log i0
! 1).

Hence we have proved (28).
Now we are going to prove that

S (n) =
log2 n

n log log n

nX
i=3

O

�
log log i

log2 i

�
(29)

is a bounded series. There exists a bounded an series such that S (n) can be written as

log2 n

n log log n

nX
i=3

ai
log log i

log2 i
:

Now we use the same trick as previously, namely we cut the sum into two pieces. Denote i1 =
j

n
log2 n

k
,

c = max
i
ai, and write

S (n) � S01 (n) + S01 (n) = c
i1X
i=3

log2 n

n log2 i
+ c

nX
i=i1

log2 n

n log2 i
:

Now we have

S01 (n) � ci1
log2 n

n
� c

and for all " > 0

S02 (n) � cn
1

n

log2 n

log2 i1
� c log2 n

log2 n� 4 log log n� "
� 2c

for all su¢ ciently large n. So we have proved (29). Hence the theorem.
As in the high dimensional case, the initial distribution does not in�uence the asymptotic behavior.

More precisely
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Proposition 3 The assertion of Theorem 5 remains true when the distribution of "0 is arbitrary.

Proof. The proof is very similar to the one of Proposition 1. We know that


 (n) =
2�
p
j�j

log n
+O

�
log log n

log2 n

�
:

With the notation e
ej (n) = 2�
p
j�j

logn + hj (n) our aim is to prove hj (n) = O
�
log logn
log2 n

�
. The analogue of

(3) is

2�
p
j�j

log n
+ hj (n) =

sP
k=1

"�
�k + b

j
k(K)

� 2�
p
j�j

log (n�K) + h
k (n�K)

!#
+O

�
K � (n�K)�1

�
;

and the analogue of (4) is

hj(n) =
sP

k=1

�kh
k(n�K) +

sP
k=1

bjk(K)h
k(n�K) +O

�
K � (n�K)�1

�
+

 
2�
p
j�j

log (n�K) �
2�
p
j�j

log n

!
= : I + II + III + IV:

With the choice K (n) = b
p
nc elementary calculations show that I + II + III + IV � O

�
log logn
log2 n

�
.

Now let us see the estimation of the variance.

Theorem 6 If "0 � � then we have

V2(n) = O

�
n2 log log n

log3 n

�
:

Proof. The beginning of the proof is the same as in Theorem 2. The di¤erence is that when we change

K to K (n), we can write O
�
log logK(n)
logK(n)

�
instead of � in the sense of Proposition 3. From now, just like

in the proof of Theorem 2 it is not di¢ cult to deduce

V2 (n) � O
�

n

log n

��
log logK (n)

logK (n)
O

�
n

log n

�
+O

�
n log log n

log2 n

��
+K (n)O

�
n

log n

�
:

Taking K (n) =
j

n
log2 n

k
proves the statement.

Remark 2 The assertion of Theorem 6 remains true when the distribution of "0 is some arbitrary �.
Moreover, the great order is uniform in �.

Proof. Let us introduce the notation L�2 (n), E
�
2 (n) and V

�
2 (n) for the RWwIS when "0 � �. Obviously,

V �2 (n) = E
h
(L�2 (n))

2
i
� (E�2 (n))

2
: (30)

On the other hand,

sX
j=1

�jV
ej
2 (n) =

sX
j=1

�jE
h�
L
ej
2 (n)

�2i� sX
j=1

�j
�
E
ej
2 (n)

�2
: (31)
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Since E
h
(L�2 (n))

2
i
=

sP
j=1

�jE
h�
L
ej
2 (n)

�2i
, subtracting (31) from (30) we conclude

V �2 (n)�
sX
j=1

�jV
ej
2 (n) = O

�
n2 log log n

log3 n

�
: (32)

It is clear that the great order on the right hand side is uniform in �. In the sense of (32) it is enough
to prove the assertion for � = ej ; (j = 1; :::; s). To do so, let us substitute � = � to (32) to obtain

V2 (n)�
sX
j=1

�jV
ej
2 (n) = O

�
n2 log log n

log3 n

�
:

Now Theorem 6 implies
sX
j=1

�jV
ej
2 (n) = O

�
n2 log log n

log3 n

�
:

Since for all j and n �j and V
ej
2 (n) are non negative, we have proved the statement for all ej .

Corollary 2 For a RWwIS in d = 2 dimension weak law of large numbers holds.

Proof. Since O
�
n2 log logn
log3 n

�
< O

�
n2

log2 n

�
, Chebyshev�s inequality applies.

5 Final remarks

1. All of our results show that the RWwIS behaves like the simple symmetric random walk in an
asymptotic sense. The main features are very similar, only the involved constants di¤er. The results
showing that the asymptotic behavior is independent of the initial distribution on the internal states
(Proposition 1 and 3, Remark 2) are intuitively trivial as after some steps " will be very close to �.
Nevertheless, these assertions need formal proofs as well, especially as they are used by the estimations
of Vd (n). Of course, this similarity to the simple symmetric random walk could change if we went
further in the generalization, for instance, if we allowed countable set of internal states. This model
is not treated yet, it must need some more involved technics. However, one could consider problems
concerning RWwIS (even with �nite set of internal states), which have no analogue in the case of simple
symmetric random walk. For instance, an interesting question is that what is the distribution of " when
the wandering particle hits the origin for the �rst time, assuming that it starts from very far away. This
question will be treated in my diploma thesis. The same question in terms of Lorentz process has been
recently discussed in [1].
2. Our basic assumption (ii) is not essential. The above theorems could be generalized to the case

dropping basic assumption (ii), as the limit theorem in [3] is proved for this case as well. Only the
computations would became longer. The other three assumptions are essential.
3. Strong law of large numbers for d = 2 is not proved yet. For the case of simple symmetric random

walk there is a quite laborious proof of this theorem in [2]. The main part of this proof can be generalized
easily to RWwIS, but there are some technical di¢ culties in the end, which are not solved yet.
4. The analogue of Theorem 5 and the above mentioned strong law of large numbers for Lorentz

process has been recently examined in [5]. These proofs are laborious, too.

Appendix

In the Appendix we write theorems and proofs, which are necessary to understand the previous sections,
but which are already published (in [2] and [3]). At the same time we will have some remarks to these
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theorems, too. First we reformulate a special case of Theorem 5.2. in [3] under our basic assumption
(ii). After it we prove strong law of large numbers for high dimensional simple symmetric random walk,
which proof can be found in [2].

Local limit theorem for RWwIS

We have to start with some de�nition. Denote

Ay = (py;j;k)j;k=1;:::;s ;

Ml =
P
y2Zd

ylAy;

�l;m =
P
y2Zd

ylymAy:

Theorem 7 If a RWwIS in Zd ful�lls our basic assumptions and the matrix � = (�l:m)1�l;m�d whose
elements are

�l;m = h�;�l;m1i �
D
�;Ml (Q� 1)�1Mm1

E
�
D
�;Mm (Q� 1)�1Ml1

E
(which can be called a covariance matrix) is positive de�nite, thenX

(x;k)2H

����P (�n = (x; k)j�0 = (0; j))� n�d=2�kg� � xp
n

�����! 0

as n ! 1, where g� (x) denotes the density of a Gaussian distribution with mean 0 and covariance
matrix �.

We skip the proof, it can be seen in [2]. In fact, there is a typo in [2] as they write n�1=2 instead of
n�d=2 but it is easy to correct it even in the proof.

Strong law of large numbers for high dimensional simple symmetric random
walk

Theorem 8 ([2] Theorem 2) For simple symmetric random walk the following estimations hold

V3 (n) = O
�
n3=2

�
V4 (n) = O (n log n)

Vd (n) = O (n) for d = 5; 6; ::: .

We omit the proof here. Using these estimations one can prove strong law of large numbers:

Theorem 9 ([2] Theorem 4) Let d � 3. The random variable Ld (n) obeys the strong law of large
numbers, that is,

P

�
lim
n!1

Ld(n)

Ed(n)
= 1

�
= 1: (33)

Proof. Let � be any real number satisfying

5=6 < � < 1 (34)

and take for � any number with
2

4�� 3 < � <
1

1� � (35)
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such a choice of � is possible because of (34).
Put

nk =
�
k�
�

k = 1; 2; ::: . (36)

Since Theorem 8 we have V3 (n) = O
�
n3=2

�
. Now apply Chebyshev�s inequality to have

P (jLd (nk)� nk
dj > n�k ) = O
�
n
3=2�2�
k

�
= O

�
k(3�4�)�=2

�
:

Since (3� 4�)�=2 < �1 by (35) it follows that
1X
k=1

P (jLd (nk)� nk
dj > n�k ) <1:

Hence, by the Borel-Cantelli lemma, there is probability 1 that

jLd (nk)� nk
dj � n�k (37)

hold for all su¢ ciently large k. But (37) implies

jLd (n)� n
dj � jLd (n)� Ld (nk)j+ jLd (nk)� nk
dj+ j(nk � n) 
dj � n�k + 2nk+1 � 2nk (38)

for nk � n < nk+1. By (36), nk+1 � nk = O
�
k��1

�
, i.e.

lim
k!1

(k + 1)
� � k�

k��1
= �:

Since � � 1 < �� we have also k��1 = O (n�k ). Thus the right side of (38) is O (n�k ) and hence O (n�)
for nk � n < nk+1. Thus we have proved that for almost all paths

Ld (n) = n
d +O (n
�)

for every � > 5=6. Hence the statement.
It is easy to check that if we had estimation Vd (n) = O (n� ) with some � < 2, then the above

argument would work with the following parameters:

1 + �

3
< � < 1

1

2�� � < � <
1

1� �

So the main point is that we should have some � < 2 such that Vd (n) = O (n� ) as it was mentioned at
the beginning of Section 2.
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