Midterm I.

Mathematics A3 in English for Civil Engineering students
Imre Péter Tóth, October 12, 2011

1. (6 points) Find the general solution of the differential equation

$$
x^{2} y^{\prime}=1+y^{2} .
$$

2. (6 points) Solve the Cauchy problem

$$
x y^{\prime}+y=\ln x \quad, \quad y(1)=0 .
$$

3. (6 points) Find the equilibrium solutions of the following autonomous first-order differential equation, and characterize their stability.

$$
y^{\prime}=y^{2}(y-3) .
$$

4. (6 points) Find the general solution of the differential equation

$$
y^{\prime \prime}+y=-2 \sin x \text {. }
$$

5. (6 points) Find the general solution of the differential equation

$$
y^{\prime \prime}=-2\left(y^{\prime}\right)^{2} \tan y
$$

Solutions

1. Separable. $y=\tan \left(C-\frac{1}{x}\right)$
2. First order linear (inhomogeneous, with variable coefficients). $y=$ $\ln x-1+\frac{1}{x}$. (The general solution of the diff.eq. is $y=\ln x-1+\frac{C}{x}$, and using the initial condition gives $C=1$.)
3. There are two equilibrium solutions, 0 and 3 . Both are unstable. (Actually 0 is semi-stable.)
4. Second order linear (inhomogeneous, with constant coefficients and special right hand side). The solution is $y=A \cos x+B \sin x+x \cos x$. (The solution of the homogeneous part is $Y_{\text {hom,gen }}=A \cos x+B \sin x$, and the good test function for the particular solution is $y_{p}=C x \cos x+$ $D x \sin x$, because of resonanace.)
5. Special second order equation, incomplete, with x missing. The solution is $y=\arctan (C x+D)$.
