Midterm I., Version "A"
Mathematics A3 in English for Civil Engineering students
Márton Balázs, October 16, 2006

1. (6 points) Find the general solution of the differential equation

$$
y^{\prime}=\frac{x^{2}}{y\left(1+x^{3}\right)} .
$$

2. (6 points) The following differential equation is of the form $y^{\prime}=f(y)$. Sketch the graph of the function $f(y)$, find all critical points, and characterize their stability.

$$
y^{\prime}=y(y-1) .
$$

3. (6 points) Solve the Cauchy problem

$$
y^{\prime \prime}+2 y^{\prime}-3 y=0, \quad y(0)=1, y^{\prime}(0)=0 .
$$

4. (6 points) The characteristic equation of the homogeneous part of $y^{\prime \prime}-4 y^{\prime}+4 y=\mathrm{e}^{2 x}$ has only one root $r=2$ (of multiplicity two). Find the general solution of $y^{\prime \prime}-4 y^{\prime}+4 y=\mathrm{e}^{2 x}$. Feel free to use any of the following information:

$$
\begin{aligned}
\left(t \mathrm{e}^{2 t}\right)^{\prime} & =e^{2 t}+2 t e^{2 t}, & \left(t \mathrm{e}^{2 t}\right)^{\prime \prime} & =4 e^{2 t}+4 t e^{2 t} \\
\left(t^{2} \mathrm{e}^{2 t}\right)^{\prime} & =2 t e^{2 t}+2 t^{2} e^{2 t}, & \left(t^{2} \mathrm{e}^{2 t}\right)^{\prime \prime} & =2 e^{2 t}+8 t e^{2 t}+4 t^{2} e^{2 t} .
\end{aligned}
$$

5. (6 points) Find the general solution of the differential equation

$$
2 x(\sin y+1)+x^{2} \cos y \cdot y^{\prime}=0 .
$$

6. (Bonus problem, only try when all other problems are completed and checked, 3 points) The Earth's gravity at distance y from the Earth's center is proportional to y^{-2}. Write up a Cauchy problem for a free-falling body that starts at $y(0)=1$ with velocity $y^{\prime}(0)=v_{0}>0$ (do not take air resistance into account). Solve the equation for $v(y)$, the velocity of the body at distance y from the Earth's center. Find the critical speed, the smallest v_{0} value which allows that body to leave the Earth arbitrarily far.

Answers for Midterm I., Version "A"

1. $3 y^{2}-2 \ln \left|1+x^{3}\right|=C, \quad x \neq-1, y \neq 0$.
2. $y=0$: Ljapunov-stable, $y=1$: unstable
3. $y=\frac{3}{4} \mathrm{e}^{t}+\frac{1}{4} \mathrm{e}^{-3 t}$
4. $y=c_{1} \mathrm{e}^{2 t}+c_{2} t \mathrm{e}^{2 t}+\frac{1}{2} t^{2} \mathrm{e}^{2 t}$
5. $x^{2} \sin y+x^{2}=$ Const.
6. The acceleration is negative proportional to y^{-2}, so

$$
\ddot{y}(t)=-\frac{k}{(y(t))^{2}}, \quad y(0)=1, \quad y^{\prime}(0)=v_{0} .
$$

Substitute the velocity $v(y)=\dot{y}$, then

$$
v^{\prime}(y) \cdot v(y)=-\frac{k}{y^{2}}, \quad v(1)=v_{0} .
$$

The solution is $v(y)=\sqrt{2 k(1 / y-1)+v_{0}^{2}}$, which stays positive for all y 's if and only if $v_{0}>\sqrt{2 k}$. Hence $\sqrt{2 k}$ is the critical speed value.

